header

Hardware/software co-design implementation for cnn model using memory tiling / (Record no. 165547)

MARC details
000 -LEADER
fixed length control field 04412namaa22004451i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240211192447.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 2310s2022 xao frm 000 engnd d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposit
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 004.6
Edition number 21
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 004.6
Edition number 21
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.13.08.M.Sc.2022.Mo.H
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mohamed Nafea Mohamed Nafea Khalifa,
Relator term preparation.
245 10 - TITLE STATEMENT
Title Hardware/software co-design implementation for cnn model using memory tiling /
Statement of responsibility, etc. Mohamed Nafea Mohamed Nafea Khalifa ; Amin M. Nassar, Omar A. Nasr, Hassan Mostafa.
246 ## - VARYING FORM OF TITLE
Title proper/short title تنفيذ تصميم نموذج الشبكة العصبية التلافيفية بتقسيم التصميم بين العتاد والبرمجيات باستخدام تبليط الذاكرة
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2022.
300 ## - PHYSICAL DESCRIPTION
Extent 100 Pages :
Other physical details Illustrations, Photograph ;
Dimensions 25 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Source rda content
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type term Unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.)-Cairo University, Faculty of Engineering, Department of Electronics and Communications,2022.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: Pages 91-95.
520 ## - SUMMARY, ETC.
Summary, etc. الشبكات العصبية التلافيفية (CNN) تم استخدمها مؤخرًا في العديد من التطبيقات. العدد الهائل من العمليات المكثفة في نماذج CNN من الصعب تحقيق مستويات الأداء المطلوبة باستخدام معالجات CPU. لذلك، تم تطوير مسرعات أجهزة مختلفة لشبكات CNN العميقة مؤخرًا لتحسين الإنتاجية، مسرعات FPGA هي الأكثر شيوعا. في هذا العمل، يتم اتباع منهجية تقسيم التصميم المشترك (HW/SW) باستخدام أداة Xilinx SDSoC لاقتراح مسرّع عالي المستوى يعتمد على FPGA في نموذج GoogLeNet CNN.قمنا بتطوير تطبيقات(C++)عالية المستوى تستخدم الموارد المتاحة لتحقيق أقصى أداء. المسرع المقترح يدعم دقة بيانات مختلفة مثلالنقطة العائمة، والنقطة العائمة النصفية، ودقة البيانات الثابتة. تُظهر النتائج التجريبية تسريعًا قدره 48x لدقة بيانات 32-bit floating، مع 3.8 واط لإجمالي استهلاك الطاقة على الرقاقة. يستهلك المسرع المقترح موارد FPGA أقل بنسبة 40٪ من مسرع RTL المقابل
520 ## - SUMMARY, ETC.
Summary, etc. Convolution Neural Networks (CNNs) are recently deployed in many applications. The massive number of network parameters and the intensive operations in CNN models make it challenging to achieve desired performance levels using general-purpose processors. Therefore, different hardware accelerators for deep CNNs have recently been developed to improve throughput. FPGA-based accelerators are mostly used. In this work, a Hardware/Software (HW/SW) Co-design Partitioning methodology is followed using the Xilinx SDSoC tool to propose a High-Level Synthesis (HLS) FPGA-based accelerator for the GoogLeNet CNN model. Different loop optimization techniques are deployed to allow convolutional functions to run on hardware. The proposed accelerator supports different data precisions. Experimental results show a speedup of 48x for 32-bit float data precision, with 3.8 watts for total on-chip power consumption. The proposed accelerator consumes 40% less FPGA resources than the corresponding RTL accelerator
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issues also as CD.
546 ## - LANGUAGE NOTE
Language note Text in English and abstract in Arabic & English.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Computer networks
General subdivision Management
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Electronic data processing
General subdivision Certification.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element R (Computer program language).
653 ## - INDEX TERM--UNCONTROLLED
Uncontrolled term Hardware Acclerators
-- GoogLeNet
-- Convolutional Neural Networks (CNNs)
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Omar A. Nasr,
Relator term thesis advisor.
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Hassan Mostafa,
Relator term thesis advisor.
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Amin M. Nassar,
Relator term thesis advisor.
900 ## - EQUIVALENCE OR CROSS-REFERENCE-PERSONAL NAME [LOCAL, CANADA]
Numeration 01-01-2022.
Titles and other words associated with a name Amin M. Nassar
-- Omar A. Nasr
-- Hassan Mostafa
Dates associated with a name Mohsen Abd El Razik Rashwan
-- Ahmed Hassan Kamel Madian
Universities Cairo University
Faculties Faculty of Engineering
Divisons Department of Electronics and Communications
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Mohamady
Reviser Hanan
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme Dewey Decimal Classification
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type
Dewey Decimal Classification Not for loan المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.13.08.M.Sc.2022.Mo.H 01010110087874000 30.10.2023 Thesis