header

Development of six machine learning models for pump intake pressure calculations in esp wells / (Record no. 167248)

MARC details
000 -LEADER
fixed length control field 04517namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20240622101504.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240601s2023 |||a|||f |m|| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
Language code of sung or spoken text ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 622.18
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 622.18
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01 13 12 M.Sc 2023 Mo.D
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mohamed Hamdy Mohamed Ibrahim El-Sersy,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Development of six machine learning models for pump intake pressure calculations in esp wells /
Statement of responsibility, etc. By Mohamed Hamdy Mohamed Ibrahim El-Sersy; Under the Supervision of Prof. Dr. Mohamed Helmy Sayyouh, Prof. Dr. Ahmed Hamdy El-Banbi, Prof. Dr. Mahmoud Abu El Ela
246 15 - VARYING FORM OF TITLE
Title proper/short title تطوير ست نماذج للتعلم الآلي للتنبؤ بضغط سحب المضخة في الابار التي تستخدم طرق الرفع بالمضخات الغاطسة /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023.
300 ## - PHYSICAL DESCRIPTION
Extent 117 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.)-Cairo University, 2023.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 66-69.
520 ## - SUMMARY, ETC.
Summary, etc. The pump intake pressure (PIP) is a crucial parameter for optimizing <br/>the performance improvement of pumped oil wells. Recently, Electrical <br/>submersible pump (ESP) systems have usually adopted downhole gauges to <br/>evaluate PIP. In this study, six new models (Linear Regression (LR) model, <br/>Polynomial Regression (PR) model, Decision Tree (DT) model, Random Forest <br/>(RF) model, Support Vector Machine (SVM) model, and finally, Artificial Neural <br/>Network (ANN) model) were developed based on machine learning algorithms <br/>and Artificial Intelligence (AI) techniques to predict pump intake pressure (PIP) <br/>from readily available data, and field measurements in ESP pumped wells. <br/>A database of 2352 field data points was collected from 105 ESP wells to <br/>develop the six new models. The data was split into 60% (1411 data points) for <br/>training and 40% (941 data points) for testing. The developed models rely on <br/>the following measurements as input parameters: wellhead pressure, total <br/>production rate, water cut, oil gravity, pump setting depth, the net liquid above <br/>the pump, tubing size, casing size, and casing pressure. <br/><br/> <br/><br/>The models' accuracies were compared against each other. Then, the <br/>developed models were compared against the accuracy of previous <br/>correlations and actual readings obtained from ESP downhole pressure <br/>sensors. The results indicate that the accuracy of the ANN model is significantly <br/>higher than that of the other developed machine learning models and the <br/>previously available correlations. Using the ANN model, the Average Mean <br/>Absolute Error (AMAE) comparing the calculated and the measured PIP is <br/>11.93% and 12.33% for the training and testing data, respectively. These <br/>results demonstrate the strength of the developed model to predict the PIP with <br/>better accuracy and without the need for a downhole pressure sensor.
520 ## - SUMMARY, ETC.
Summary, etc. تم استنباط ستة نماذج جديدة وهي نموذج الانحدار الخطي ونموذج الانحدار متعدد الحدود ونموذج شجرة القرار ونموذج الغابة العشوائية ونموذج آلة المتجهات الداعم وأخيراً نموذج الشبكة العصبية الاصطناعية. تم تطوير هذه النماذج استنادًا إلى خوارزميات التعلم الآلي وتقنيات الذكاء الاصطناعي، للتنبؤ بضغط سحب المضخة من القياسات الحقلية المتاحة بسهولة وبيانات الآبار التي تستعمل المضخات الغاطسة الكهربائية
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Petroleum Engineering
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Artificial Intelligence
-- ESP wells
-- Artificial Neural Networks
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohamed Helmy Sayyouh
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ahmed Hamdy El Banbi
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mahmoud Abu El-Ela
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2023
Supervisory body Mahmoud Abu El-Ela
-- Ahmed Hamdy El Banbi
-- Mohamed Helmy Sayyouh
Discussion body Khaled Ahmed Abdel Fattah
-- Khaled Mohamed Mwafy
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Petroleum Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Nourhan
Reviser Names Huda
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 01.06.2024 88359 Cai01 13 12 M.Sc 2023 Mo.D 01010110088359000 01.06.2024 01.06.2024 Thesis