MARC details
000 -LEADER |
fixed length control field |
04517namaa22004211i 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
OSt |
005 - أخر تعامل مع التسجيلة |
control field |
20240622101504.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240601s2023 |||a|||f |m|| 000 0 eng d |
040 ## - CATALOGING SOURCE |
Original cataloguing agency |
EG-GICUC |
Language of cataloging |
eng |
Transcribing agency |
EG-GICUC |
Modifying agency |
EG-GICUC |
Description conventions |
rda |
041 0# - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
Language code of summary or abstract |
eng |
Language code of sung or spoken text |
ara |
049 ## - Acquisition Source |
Acquisition Source |
Deposit |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
622.18 |
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC) |
Classification number |
622.18 |
Edition number |
21 |
097 ## - Degree |
Degree |
M.Sc |
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC) |
Local Call Number |
Cai01 13 12 M.Sc 2023 Mo.D |
100 0# - MAIN ENTRY--PERSONAL NAME |
Authority record control number or standard number |
Mohamed Hamdy Mohamed Ibrahim El-Sersy, |
Preparation |
preparation. |
245 10 - TITLE STATEMENT |
Title |
Development of six machine learning models for pump intake pressure calculations in esp wells / |
Statement of responsibility, etc. |
By Mohamed Hamdy Mohamed Ibrahim El-Sersy; Under the Supervision of Prof. Dr. Mohamed Helmy Sayyouh, Prof. Dr. Ahmed Hamdy El-Banbi, Prof. Dr. Mahmoud Abu El Ela |
246 15 - VARYING FORM OF TITLE |
Title proper/short title |
تطوير ست نماذج للتعلم الآلي للتنبؤ بضغط سحب المضخة في الابار التي تستخدم طرق الرفع بالمضخات الغاطسة / |
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Date of production, publication, distribution, manufacture, or copyright notice |
2023. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
117 pages : |
Other physical details |
illustrations ; |
Dimensions |
30 cm. + |
Accompanying material |
CD. |
336 ## - CONTENT TYPE |
Content type term |
text |
Source |
rda content |
337 ## - MEDIA TYPE |
Media type term |
Unmediated |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
volume |
Source |
rdacarrier |
502 ## - DISSERTATION NOTE |
Dissertation note |
Thesis (M.Sc.)-Cairo University, 2023. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc. note |
Bibliography: pages 66-69. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
The pump intake pressure (PIP) is a crucial parameter for optimizing <br/>the performance improvement of pumped oil wells. Recently, Electrical <br/>submersible pump (ESP) systems have usually adopted downhole gauges to <br/>evaluate PIP. In this study, six new models (Linear Regression (LR) model, <br/>Polynomial Regression (PR) model, Decision Tree (DT) model, Random Forest <br/>(RF) model, Support Vector Machine (SVM) model, and finally, Artificial Neural <br/>Network (ANN) model) were developed based on machine learning algorithms <br/>and Artificial Intelligence (AI) techniques to predict pump intake pressure (PIP) <br/>from readily available data, and field measurements in ESP pumped wells. <br/>A database of 2352 field data points was collected from 105 ESP wells to <br/>develop the six new models. The data was split into 60% (1411 data points) for <br/>training and 40% (941 data points) for testing. The developed models rely on <br/>the following measurements as input parameters: wellhead pressure, total <br/>production rate, water cut, oil gravity, pump setting depth, the net liquid above <br/>the pump, tubing size, casing size, and casing pressure. <br/><br/> <br/><br/>The models' accuracies were compared against each other. Then, the <br/>developed models were compared against the accuracy of previous <br/>correlations and actual readings obtained from ESP downhole pressure <br/>sensors. The results indicate that the accuracy of the ANN model is significantly <br/>higher than that of the other developed machine learning models and the <br/>previously available correlations. Using the ANN model, the Average Mean <br/>Absolute Error (AMAE) comparing the calculated and the measured PIP is <br/>11.93% and 12.33% for the training and testing data, respectively. These <br/>results demonstrate the strength of the developed model to predict the PIP with <br/>better accuracy and without the need for a downhole pressure sensor. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
تم استنباط ستة نماذج جديدة وهي نموذج الانحدار الخطي ونموذج الانحدار متعدد الحدود ونموذج شجرة القرار ونموذج الغابة العشوائية ونموذج آلة المتجهات الداعم وأخيراً نموذج الشبكة العصبية الاصطناعية. تم تطوير هذه النماذج استنادًا إلى خوارزميات التعلم الآلي وتقنيات الذكاء الاصطناعي، للتنبؤ بضغط سحب المضخة من القياسات الحقلية المتاحة بسهولة وبيانات الآبار التي تستعمل المضخات الغاطسة الكهربائية |
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE |
Issues CD |
Issued also as CD |
546 ## - LANGUAGE NOTE |
Text Language |
Text in English and abstract in Arabic & English. |
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Petroleum Engineering |
Source of heading or term |
qrmak |
653 #0 - INDEX TERM--UNCONTROLLED |
Uncontrolled term |
Artificial Intelligence |
-- |
ESP wells |
-- |
Artificial Neural Networks |
700 0# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Mohamed Helmy Sayyouh |
Relator term |
thesis advisor. |
700 0# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Ahmed Hamdy El Banbi |
Relator term |
thesis advisor. |
700 0# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Mahmoud Abu El-Ela |
Relator term |
thesis advisor. |
900 ## - Thesis Information |
Grant date |
01-01-2023 |
Supervisory body |
Mahmoud Abu El-Ela |
-- |
Ahmed Hamdy El Banbi |
-- |
Mohamed Helmy Sayyouh |
Discussion body |
Khaled Ahmed Abdel Fattah |
-- |
Khaled Mohamed Mwafy |
Universities |
Cairo University |
Faculties |
Faculty of Engineering |
Department |
Department of Petroleum Engineering |
905 ## - Cataloger and Reviser Names |
Cataloger Name |
Nourhan |
Reviser Names |
Huda |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Thesis |
Edition |
21 |
Suppress in OPAC |
No |