header

Low Complexity Image Inpainting Using Autoencoder / (Record no. 169130)

MARC details
000 -LEADER
fixed length control field 04729namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250223033333.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241201s2023 |||a|||fr|m|| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.367
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 621.367
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.08.M.Sc.2023.Ab.L
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Abeer Ayman Ahmed Ali Elbehery,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Low Complexity Image Inpainting Using Autoencoder /
Statement of responsibility, etc. by Abeer Ayman Ahmed Ali Elbehery ; Under the Supervision of Prof. Dr. Yasmine Aly Fahmy, Dr. Mai Badawi Kafafy.
246 15 - VARYING FORM OF TITLE
Title proper/short title ترميم الصور بطريقة غير معقدة بإستخدام المشفر الآلي /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023.
300 ## - PHYSICAL DESCRIPTION
Extent 58 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.)-Cairo University, 2023.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 54-58.
520 ## - SUMMARY, ETC.
Summary, etc. Image inpainting is filling the missing or corrupted pixels in an image in a realistic<br/>way that cannot be differentiated by human eye. Traditionally, inpainting was done<br/>manually by artists to complete the missing regions in old paintings. In the digital<br/>processing era, image inpainting became an interesting research topic. The used<br/>techniques can be categorized into 2 categories; Non learning techniques and deep<br/>learning-based techniques.<br/>Non-learning techniques have been introduced since the year 2000. These methods<br/>include diffusion-based, patch-based and exemplar-based methods. Diffusion-based<br/>methods use partial differential equations to fill the image holes and ensure the<br/>continuity of edges along it. Patch-based methods search the whole image to find the<br/>perfect patches to complete the image, and Exemplar-based methods tend to merge both<br/>diffusion and patch-based methods.<br/>With the rise of deep learning, it is being widely used in image inpainting. The<br/>used models are capable of studying and learning the structure of the images to<br/>reconstruct the missing regions. Various models are introduced in literature for image<br/>inpainting including simple CNNs, autoencoders, GANs, DCGANs, and multi-stage<br/>networks. These models vary in the size, number of layers and number of parameters in<br/>the model.<br/>Non learning methods require simpler calculations, but they are only suitable for<br/>recovering images with simple structure and small missing regions. Deep learning-<br/>based methods have proven to be efficient for batch processing, and to fill holes of<br/>different sizes with better quality than non learning methods. But deep learning models<br/>require massive processing capabilities and long period of time for training, which may<br/>not be suitable in all cases. In this thesis, we access the complexity issue of training the<br/>image inpainting deep learning models. We propose an autoencoder architecture with<br/>some features added as skip connections, Adam optimizer and leaky ReLU, it has<br/>proven to outperforms other deep learning techniques in literature methods with lower<br/>processing and time complexity.
520 ## - SUMMARY, ETC.
Summary, etc. ترميم الصور هي عملية إكمال الأجزاء الناقصة أو المدمرة من الصور بطريقة واقعية بحيث لا تستطيع العين التمييز بين الأجزاء الأصلية والأجزاء المرممة. التعلم العميق يستخدم بكثرة في ترميم الصور لأن له أداء أفضل من طرق الترميم التقليدية، ولكنه يحتاج إلى موارد معالجة ذات إمكانيات عالية ووقت أطول لتدريب النموذج المستخدم. النموذج المقترح يستخدم المشفر الآلي لترميم الصور، مع بعض التعديلات أثبت هذا النموذج أنه أفضل من بعض النماذج المستخدمة الأخرى من حيث إمكانيات المعالجة والوقت المستهلك.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Image processing ‪Digital techniques
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Image inpainting
-- Autoencoder
-- Skip connections
-- Low complexity
-- Adam optimizer
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Yasmine Aly Fahmy
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mai Badawi Kafafy
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2023
Supervisory body Yasmine Aly Fahmy
-- Mai Badawi Kafafy
Discussion body Omar Ahmed Nasr
-- Mohamed Farouk AbdElKader
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Electronics and Communications Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Eman Ghareeb
Reviser Names Huda
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 01.12.2024 89115 Cai01.13.08.M.Sc.2023.Ab.L 01010110089115000 01.12.2024 01.12.2024 Thesis