header

proactive auto-scaling approach for resource allocation using Machine learning / (Record no. 169899)

MARC details
000 -LEADER
fixed length control field 07057namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250223033400.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241231s2023 |||a|||f m||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.711
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 005.711
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.20.05.M.Sc.2023.Mo.P.
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Mohamed Samir Hassan Khalil,
Preparation preparation.
245 10 - TITLE STATEMENT
Title proactive auto-scaling approach for resource allocation using Machine learning /
Statement of responsibility, etc. By Mohamed Samir Hassan Khalil; Supervisors Prof. Khaled Tawfic Wassif, Dr. Soha Hassan Makady.
246 15 - VARYING FORM OF TITLE
Title proper/short title نهج التحجيم التلقائي الاستباقي لتخصيص الموارد باستخدام التعلم الالي /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2023.
300 ## - PHYSICAL DESCRIPTION
Extent 73 Leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.)-Cairo University, 2023.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 67-70.
520 ## - SUMMARY, ETC.
Summary, etc. Efficient management of resources in cloud-based hosting services is essential to meet the demands of rapidly changing workloads. However, the automatic provisioning and de-provisioning of resources to match service demand is complex and requires careful attention and planning. This research presents a proactive auto-scaling framework that can accurately predict resource demand, enabling cloud providers to scale resources proactively, reduce resource waste, and improve efficiency. Two main approaches are used to manage resource usage in cloud-based hosting services: manual management by a DevOps team or automated rules. However, both can lead to scaling and inefficient resource usage. This research proposes a new proactive auto-scaling framework built on an ensemble model using several machine-learning techniques to predict application resource demand before it arises to address these challenges. The proposed framework is evaluated against three real production applications hosted on the Cegedim Cloud Hosting Environment and compared against other machine learning techniques used in similar experiments. The results show that predicting application resources like CPU or RAM is feasible. Furthermore, the ensemble model performs optimally in the CPU case and is near the optimal technique when predicting RAM resources, even in production environments.The ensemble model provides several advantages over existing methods. Firstly, it uses multiple machine learning algorithms to provide more accurate predictions of resource demand. Secondly, it is proactive, meaning it can anticipate resource demand before it arises, reducing the need for reactive scaling, which can lead to resource waste. Thirdly, it can optimize resource allocation based on predicted demand, leading to better resource utilization and cost savings.<br/>Overall, this research presents a promising approach to resource provisioning in cloud hosting services. By predicting resource demand proactively, the proposed framework can improve resource utilization and reduce costs for cloud providers.
520 ## - SUMMARY, ETC.
Summary, etc. إدارة الموارد بكفاءة في خدمات الاستضافة القائمة على السحاب ضرورية لتلبية متطلبات أعباء العمل المتغيرة بسرعة. ومع ذلك، فإن توفير الموارد تلقائيًا وإلغاء توفيرها لمطابقة طلب الخدمة معقد ويتطلب انتباهًا وتخطيطًا دقيقًا. تقدم هذه البحث إطارًا تكيفيًا يمكنه التنبؤ بطلب الموارد بدقة، مما يمكن مقدمي الخدمات السحابية من توجيه الموارد بشكل استباقي، وتقليل هدر الموارد، وتحسين الكفاءة. تُستخدم نهجان رئيسيان لإدارة استخدام الموارد في خدمات الاستضافة القائمة على السحابة: الإدارة اليدوية من قبل فريق DevOps أو قواعد آلية. ومع ذلك، يمكن أن يؤدي كلاهما إلى تكبير زائد واستخدام غير فعال للموارد. يقترح هذا البحث إطارًا جديدًا للتكيف التلقائي الاستباقي يعتمد على نموذج مجمع باستخدام عدة تقنيات لتعلم الآلة للتنبؤ بطلب موارد التطبيق قبل حدوثه لمعالجة هذه التحديات. تم تقييم الإطار المقترح مقابل ثلاث تطبيقات إنتاجية حقيقية مستضافة على بيئة استضافة السحابة المملوكة لشركة Cegedim ومقارنتها مع نماذج تعلم الآلة الأخرى المستخدمة في تجارب مماثلة. تُظهر النتائج أن توقع موارد التطبيق مثل وحدة المعالجة المركزية أو الذاكرة العشوائية هو ممكن. علاوة على ذلك، يعمل النموذج المجمع بشكل مثالي في حالة وحدة المعالجة المركزية ويكاد يكون نموذجًا مثاليًا عند توقع موارد الذاكرة العشوائية، حتى في بيئات الإنتاج. يقدم النموذج المجمع العديد من المزايا على الأساليب الحالية. أولاً، يستخدم عدة خوارزميات لتعلم الآلة لتوفير توقعات أكثر دقة لطلب الموارد. ثانيًا، فهو استباقي، مما يعني أنه يمكنه التنبؤ بطلب الموارد قبل حدوثه، مما يقلل من الحاجة إلى تكييف ردود الفعل، والتي يمكن أن تؤدي إلى هدر الموارد. ثالثًا، يمكنه تحسين تخصيص الموارد بناءً على الطلب المتوقع، مما يؤدي إلى استخدام أفضل للموارد وتوفير تكاليف.<br/>بشكل عام، يقدم هذا البحث نهجًا واعدًا لتوفير الموارد في خدمات استضافة السحابة. من خلال توقع طلب الموارد بشكل استباقي، يمكن للإطار المقترح تحسين استخدام الموارد وتقليل التكاليف لمقدمي الخدمات السحابية.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issues also as CD.
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Programming
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Auto-scaling
-- Resource Allocation
-- Dynamic Resource Provisioning
-- Resource Management On Clouds
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Khaled Tawfic Wassif
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Soha Hassan Makady
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2023
Supervisory body Khaled Tawfic Wassif
-- Soha Hassan Makady
Universities Cairo University
Faculties Faculty of Computers and Artificial Intelligence
Department Department of Software Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Sara Salah
Reviser Names Huda
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 31.12.2024 89878 Cai01.20.05.M.Sc.2023.Mo.P. 01010110089878000 31.12.2024 31.12.2024 Thesis