header

An Enhanced Machine Learning Approach For Detection of Radioactive Mineralization / (Record no. 171956)

MARC details
000 -LEADER
fixed length control field 05883namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250511094958.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250508s2024 ua a|||fr|||| 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 005
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.18.02.M.Sc.2024.Al.E.
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Ali Othman Ali Muhammad Jahlan,
Preparation preparation.
245 10 - TITLE STATEMENT
Title An Enhanced Machine Learning Approach For Detection of Radioactive Mineralization /
Statement of responsibility, etc. By Ali Othman Ali Muhammad Jahlan; Supervised By Prof. Ammar Mohammad, Prof. Mohammad A. S. Youssef.
246 15 - VARYING FORM OF TITLE
Title proper/short title نهج تعلم الآلة المحُسن للكشف عن التمعدنات المشعة /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 65 leaves :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note أThesis (M.Sc.) -Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 60-65.
520 ## - SUMMARY, ETC.
Summary, etc. This research investigates Airborne Gamma Ray Spectrometry (AGRS) data to detect naturally occurring radioactive anomalies, including potassium, uranium, and thorium, in the Wadi-Biyam area and its surroundings in Egypt's Eastern Desert between latitudes 22° 39' 45'' & 23° 01' N and longitudes 33° 47' & 34° 21' 30'' E. AGRS collects raw, unlabeled data from background radiation and radiation emitted by radioactive elements. When applying statistical methods for anomaly detection to AGRS data, several challenges arise: (1) Inaccuracy: The statistical methods might not accurately identify anomalies due to noise and variability in the data. (2) Time Consumption: Processing and analyzing the extensive data sets generated by AGRS can be time-consuming, delaying results and decision-making. (3) Bias: The statistical methods might be biased, resulting in skewed outcomes that fail to reflect the true distribution of radioactive anomalies accurately. (4) Limited Scope: While useful, traditional statistical methods have limitations regarding the complexity and variety of AGRS data. These limitations can restrict the ability to detect all significant anomalies, necessitating a more comprehensive approach. (5) False Certainty: These methods might produce results with a high degree of apparent certainty not justified by the underlying data, potentially leading to incorrect conclusions. The current challenges in anomaly detection can lead to severe consequences, such as misidentifying areas with high concentrations of radioactive elements or failing to detect significant anomalies. Therefore, the development of a new approach that can effectively address these challenges and improve the precision and reliability of anomaly detection in AGRS data is of utmost importance. We employ two machine learning methods for anomaly detection, DBSCAN and BIRCH, using the Silhouette Coefficient to evaluate results and plan mineral zones. Among the nine rock types studied, we observed significant variations in the concentration of radioactive elements, which we assessed using a Silhouette Score greater than 0.75 to ensure reliable clustering. Notably, the younger granite and wadi deposits stood out for their higher concentrations of these elements. Specifically, the younger granite exhibited a marked anomaly, with 7.55% of its points classified as abnormal, indicating elevated levels of radioactivity. Similarly, the wadi deposits demonstrated a significant presence of radioactive elements, with 4.22% of the points identified as anomalies. These findings suggest that the younger granite and wadi deposits play a crucial role in understanding the distribution of radioactive materials within the studied region, potentially offering insights into geological processes and the environmental implications of these anomalies.
520 ## - SUMMARY, ETC.
Summary, etc. من بين الأنواع التسعة من الصخور التي تمت دراستها، لاحظنا اختلافات كبيرة في تركيز العناصر المشعة، والتي قمنا بتقييمها باستخدام درجة Silhouette Score أكبر من 0.75 لضمان التجميع الموثوق. والجدير بالذكر أن رواسب الجرانيت والوادي الأصغر سناً برزت لتركيزاتهم الأعلى من هذه العناصر المشعة. وعلى وجه التحديد، أظهر الجرانيت الأصغر سناً شذوذًا ملحوظًا، حيث تم تصنيف 7.55٪ من نقاطه على أنها غير طبيعية، مما يشير إلى مستويات مرتفعة من النشاط الإشعاعي. وبالمثل، أظهرت رواسب الوادي وجودًا كبيرًا للعناصر المشعة، حيث تم تحديد 4.22٪ من النقاط على أنها مناطق مشعة. تشير هذه النتائج إلى ان younger granite وwadi deposits تلعب دورًا حاسمًا في فهم توزيع المواد المشعة داخل المنطقة المدروسة، مما قد يوفر رؤى حول العمليات الجيولوجية والآثار البيئية لهذه العناصر المشعة.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Computer Science
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Airborne Gamma-Ray Spectrometry
-- Mineral exploration
-- Machine learning
-- DBSCAN
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ammar Mohammad
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohammad A. S. Youssef
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Ammar Mohammad
-- Mohammad A. S. Youssef
Universities Cairo University
Faculties Faculty of Graduate Studies for Statistical Research
Department Department of Computer Science
905 ## - Cataloger and Reviser Names
Cataloger Name Eman El gebaly
Reviser Names Eman Ghareb
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 08.05.2025 91093 Cai01.18.02.M.Sc.2024.Al.E. 01010110091093000 08.05.2025 08.05.2025 Thesis