header

Design Of Concrete Mixes Using Artificial Neural Network / (Record no. 172208)

MARC details
000 -LEADER
fixed length control field 04142namaa22004211i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - أخر تعامل مع التسجيلة
control field 20250522115510.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250520s2024 ua a|||fr|||m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloguing agency EG-GICUC
Language of cataloging eng
Transcribing agency EG-GICUC
Modifying agency EG-GICUC
Description conventions rda
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
Language code of summary or abstract eng
-- ara
049 ## - Acquisition Source
Acquisition Source Deposit
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 624.1834
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 624.1834
Edition number 21
097 ## - Degree
Degree M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Local Call Number Cai01.13.05.M.Sc.2024.Ah.D.
100 0# - MAIN ENTRY--PERSONAL NAME
Authority record control number or standard number Ahmed Yousri Yousef Ali,
Preparation preparation.
245 10 - TITLE STATEMENT
Title Design Of Concrete Mixes Using Artificial Neural Network /
Statement of responsibility, etc. By Ahmed Yousri Yousef Ali; Under the Supervision of Prof. Dr. Hany Ahmed Abdalla, Prof. Dr. Akram Mohamed Torkey,
246 15 - VARYING FORM OF TITLE
Title proper/short title تصميم الخلطات الخرسانية باستخدام الشبكة العصبية الاصطناعية /
264 #0 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2024.
300 ## - PHYSICAL DESCRIPTION
Extent 68 pages :
Other physical details illustrations ;
Dimensions 30 cm. +
Accompanying material CD.
336 ## - CONTENT TYPE
Content type term text
Source rda content
337 ## - MEDIA TYPE
Media type term Unmediated
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Source rdacarrier
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) -Cairo University, 2024.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Bibliography: pages 64-68.
520 ## - SUMMARY, ETC.
Summary, etc. Seventy cube concrete specimens were cast in this study to test compressive strength. <br/>The artificial neural network (ANN) model was utilized to predict compressive <br/>strength for a given combination of materials in order to achieve a target compressive <br/>strength after twenty-eight days. The model uses seven input parameters, including the <br/>w/c ratio, concrete workability, cement content, maximum aggregate size, coarse <br/>aggregate content, fineness modulus of sand, and sand content, where the output is the <br/>predicted compressive strength. Feed-forward back-propagation type and the <br/>levenberg marquardt algorithm was used to predict compressive strength. The model <br/>showed great results for predicting the compressive strength of concrete, as the <br/>coefficient of variation (COV) was less than 7%, with an average of about one for the <br/>ratio of the actual compressive strength to the predicted compressive strength. Fifty-<br/>eight different mixtures from past experiments were used to ensure the accuracy of the <br/>model's prediction and the error rate for most samples was less than 10%.
520 ## - SUMMARY, ETC.
Summary, etc. يتناول البحث صب سبعين مكعب خرساني في هذه الدراسة لاختبار مقاومة الضغط. تم استخدام نموذج الشبكة العصبية الاصطناعية من نوع التغذية الأمامية والانتشار الخلفي وخوارزمية ليفينبيرج ماركاد للتنبؤ بمقاومة الضغط لمجموعة معينة من المواد. يستخدم النموذج سبعة معاملات ادخال، بما في ذلك نسبة الماء إلى الاسمنت، وقابلية تشغيل الخرسانة، ووزن الاسمنت، والمقاس الاعتباري الاكبر للركام، ووزن الركام الخشن، ومعامل نعومة الرمل، ووزن الرمل، حيث يكون الناتج هو مقاومة الضغط المتوقعة. أظهر نتائج التنبؤ بمقاومة الضغط للخرسانة، حيث كان معامل التباين أقل من 7%، بمتوسط حوالي واحد لنسبة مقاومة الضغط الفعلية إلى المتوقعة. تم استخدام ثمانية وخمسين خليطًا من التجارب السابقة لضمان دقة تنبؤ النموذج وكان معدل الخطأ في معظم العينات أقل من 10%.<br/><br/>
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Issues CD Issued also as CD
546 ## - LANGUAGE NOTE
Text Language Text in English and abstract in Arabic & English.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Concrete
Source of heading or term qrmak
653 #0 - INDEX TERM--UNCONTROLLED
Uncontrolled term Neural network
-- concrete mix design
-- compressive strength
-- optimum number of neurons
-- MATLAB
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Hany Ahmed Abdalla
Relator term thesis advisor.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Akram Mohamed Torkey
Relator term thesis advisor.
900 ## - Thesis Information
Grant date 01-01-2024
Supervisory body Hany Ahmed Abdalla
-- Akram Mohamed Torke
Discussion body Ahmed Ali Hassan
Universities Cairo University
Faculties Faculty of Engineering
Department Department of Structural Engineering
905 ## - Cataloger and Reviser Names
Cataloger Name Eman El gebaly
Reviser Names Eman Ghareb
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Edition 21
Suppress in OPAC No
Holdings
Source of classification or shelving scheme Home library Current library Date acquired Inventory number Full call number Barcode Date last seen Effective from Koha item type
Dewey Decimal Classification المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 20.05.2025 91143 Cai01.13.05.M.Sc.2024.Ah.D. 01010110091143000 20.05.2025 20.05.2025 Thesis