header

Automatic reservoir model identification using artificial neural network in pressure transient analysis / (Record no. 51305)

MARC details
000 -LEADER
fixed length control field 02335cam a2200301 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GiCUC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 150614s2014 ua d f m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GiCUC
Language of cataloging eng
Transcribing agency EG-GiCUC
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposite
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.13.12.M.Sc.2014.Ah.A
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmad Mohamad Almaraghi
245 10 - TITLE STATEMENT
Title Automatic reservoir model identification using artificial neural network in pressure transient analysis /
Statement of responsibility, etc. Ahmad Mohamad Almaraghi ; Supervised Ahmed H. Elbanbi
246 15 - VARYING FORM OF TITLE
Title proper/short title استخدام الشبكات العصبية لتحديد نوع نموذج الخزان في تحليل الضغوط أليا
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Cairo :
Name of publisher, distributor, etc. Ahmad Mohamad Almaraghi ,
Date of publication, distribution, etc. 2014
300 ## - PHYSICAL DESCRIPTION
Extent 75 P. :
Other physical details charts ;
Dimensions 30cm
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
520 ## - SUMMARY, ETC.
Summary, etc. Oil and gas reservoirs are characterized by qualitative and quantitative values using pressure transient analysis. The well test is conducted by creating a flow disturbance in the well and recording the related response of the bottom-hole pressure. Well test analysis consists of two main phases: (1) the recognition of the entire reservoir model, and (2) the model parameter estimation. The objective of this study is to apply the Artificial Neural Network (ANN) technology to identify the reservoir model. A multilayer neural network had been used with back propagation optimization algorithm for the recognition process. The required training and test datasets have been generated by using the analytical solutions of commonly used reservoir models. Nine networks have been constructed; each one differentiates among six boundary models. Most commonly found reservoir models of different inner, outer boundary and reservoir medium are included (e.g. vertical, fracture and horizontal wells; homogenous, dual porosity and radial composite reservoirs; and infinite, one sealing fault, two sealing faults, rectangle and circle boundaries)
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issued also as CD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Artifical neural network
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Automatic reservoir model identification
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Pressure transient analysis
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ahmed Hamdy Elbanbi ,
Relator term
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Nazla
Reviser Revisor
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Soheir
Reviser Cataloger
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type Copy number
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.13.12.M.Sc.2014.Ah.A 01010110065711000 22.09.2023 Thesis  
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة مخـــزن الرســائل الجـــامعية - البدروم 11.02.2024 Cai01.13.12.M.Sc.2014.Ah.A 01020110065711000 22.09.2023 CD - Rom 65711.CD