header

Heavy-tailed longitudinal data : (Record no. 59163)

MARC details
000 -LEADER
fixed length control field 02441cam a2200301 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GiCUC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 161225s2016 ua d f m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GiCUC
Language of cataloging eng
Transcribing agency EG-GiCUC
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposite
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.03.01.M.Sc.2016.Wa.H
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Wafaa Ibrahim Mohamed Ibrahim
245 10 - TITLE STATEMENT
Title Heavy-tailed longitudinal data :
Remainder of title An adaptive linear regression approach /
Statement of responsibility, etc. Wafaa Ibrahim Mohamed Ibrahim ; Supervised Ahmed Mahmoud Gad
246 15 - VARYING FORM OF TITLE
Title proper/short title البيانات الطولية كثيفة الاطراف :
Remainder of title اسلوب انحدار خطي تكيفي
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Cairo :
Name of publisher, distributor, etc. Wafaa Ibrahim Mohamed Ibrahim ,
Date of publication, distribution, etc. 2016
300 ## - PHYSICAL DESCRIPTION
Extent 83 P. :
Other physical details charts ;
Dimensions 25cm
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) - Cairo University - Faculty of Economics and Political Science - Department of Statistics
520 ## - SUMMARY, ETC.
Summary, etc. Longitudinal studies play a prominent role in many social and economics fields. They are indispensable to the study of change in an outcome over time. Special statistical analysis techniques are needed for longitudinal data to accommodate the potential patterns of correlation and variation that might be combined to produce a complicated covariance structure Most of the estimation methods for longitudinal models are based on multivariate normal distribution assumption. However, in many situations this assumption may be violated, for example if the error distribution is heavy tailed. Hence, a proper estimation method is needed in such situations. The least absolute deviation (LAD) estimator minimizes the absolute deviation errors. The adaptive linear regression estimate (ALR) is a linear combination of ordinary least squares (OLS) and least absolute deviations (LAD) are used in case of heavy-tailed cross-sectional data. In the present thesis the least absolute deviation (LAD) estimator developed to accommodate heavy tailed longitudinal data. Also, the adaptive linear regression estimator (ALR) is coined and applied to heavy tailed longitudinal data. Simulation studies are conducted to evaluate the proposed techniques, in addition to applying modified estimators on a real data set
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issued also as CD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Heavy-tailed longitudinal data
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Least Absolute Deviations (LAD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Robust estimator
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ahmed Mahmoud Gad ,
Relator term
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Enas
Reviser Cataloger
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Nazla
Reviser Revisor
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type Copy number
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.03.01.M.Sc.2016.Wa.H 01010110070523000 22.09.2023 Thesis  
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة مخـــزن الرســائل الجـــامعية - البدروم 11.02.2024 Cai01.03.01.M.Sc.2016.Wa.H 01020110070523000 22.09.2023 CD - Rom 70523.CD