header

Using MID and high level visual features for surgical workflow detection in cholecystectomy procedures / (Record no. 59524)

MARC details
000 -LEADER
fixed length control field 02141cam a2200313 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GiCUC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170121s2016 ua o f m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GiCUC
Language of cataloging eng
Transcribing agency EG-GiCUC
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposite
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.13.06.M.Sc.2016.Sh.U
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Sherif Mohamed Hany Shehata
245 10 - TITLE STATEMENT
Title Using MID and high level visual features for surgical workflow detection in cholecystectomy procedures /
Statement of responsibility, etc. Sherif Mohamed Hany Shehata ; Supervised Fathi Hassan Saleh , Nicolas Padoy
246 15 - VARYING FORM OF TITLE
Title proper/short title استخدام صفات بصرية متوسطة و عالية المستوى لتمييز المراحل الجراحية فى عمليات استئصال المرارة بالمنظار
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Cairo :
Name of publisher, distributor, etc. Sherif Mohamed Hany Shehata ,
Date of publication, distribution, etc. 2016
300 ## - PHYSICAL DESCRIPTION
Extent 53 P. :
Other physical details photographs ;
Dimensions 30cm
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
520 ## - SUMMARY, ETC.
Summary, etc. We present a method that uses visual information in a cholecystectomy procedure{u2019}s video to detect the surgical workflow. While most related work relies on rich external information, we rely only on the endoscopic video used in the surgery. We fine tune a convolutional neural network and use it to get mid-level features representing the surgical phases. Additionally, we train DPM object detectors to detect the used surgical tools, and utilize this information to provide discriminative high-level features. We present a pipeline that employs the mid and high level features by using one vs all SVMs followed by an HHMM to infer the surgical workflow. We present detailed experiments on a relatively large dataset containing 80 cholecystectomy videos. Our best approach achieves 90% detection accuracy in offline mode using only visual information
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issued also as CD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Cholecystectomy
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Deformable part models
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Surgical workflow
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Fathi Hassan Saleh ,
Relator term
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Nicolas Padoy ,
Relator term
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Nazla
Reviser Revisor
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Samia
Reviser Cataloger
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type Copy number
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.13.06.M.Sc.2016.Sh.U 01010110070763000 22.09.2023 Thesis  
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة مخـــزن الرســائل الجـــامعية - البدروم 11.02.2024 Cai01.13.06.M.Sc.2016.Sh.U 01020110070763000 22.09.2023 CD - Rom 70763.CD