header

Hybrid particle swarm optimization and design of experiment / (Record no. 63806)

MARC details
000 -LEADER
fixed length control field 02268cam a2200313 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GiCUC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 171203s2017 ua d f m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GiCUC
Language of cataloging eng
Transcribing agency EG-GiCUC
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposite
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.13.13.M.Sc.2017.Ma.H
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mai Salah Eldin Abdelaziz Mohamed
245 10 - TITLE STATEMENT
Title Hybrid particle swarm optimization and design of experiment /
Statement of responsibility, etc. Mai Salah Eldin Abdelaziz Mohamed ; Supervised Mohamed H. Gadallah , Sayed M. Metwalli
246 15 - VARYING FORM OF TITLE
Title proper/short title طريقة أمثلية حشد الجزيئات المهجنة بإستخدام تصميم التجارب
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Cairo :
Name of publisher, distributor, etc. Mai Salah Eldin Abdelaziz Mohamed ,
Date of publication, distribution, etc. 2017
300 ## - PHYSICAL DESCRIPTION
Extent 114 P. :
Other physical details charts ;
Dimensions 30cm
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mechanical Design and Production
520 ## - SUMMARY, ETC.
Summary, etc. A hybrid Particle Swarm Optimization algorithm and design of experiment approach is developed and tested. The hybridization between the two methods has two different ways: The first one is a trial to make use of design of experiment to reach the optimum selection and combinations of particle swarm optimization's most significant factors (maximum inertia weight }max, minimum inertia weight }min, acceleration coefficients, C1 and C2) using 3 levels orthogonal arrays OAs. An L27OA is employed to study the four factors at three levels. The particle swarm optimization is then applied on a number of benchmark problems to find the optimum solution. The second method is using design of experiments on the problem variables prior to particle swarm optimization. According to the number of parameters of the problem, a suitable orthogonal array is used and number of levels for each parameter is assigned. The obtained feasible solutions are employed as an initial swarm for particle swarm optimization algorithm instead of using large randomly selected swarms
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issued also as CD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Design of experiment
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Hybrid PSO
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Particle swarm optimization
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mohamed Hassan Gadallah ,
Relator term
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Sayed Mohamed Metwalli ,
Relator term
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Nazla
Reviser Revisor
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Samia
Reviser Cataloger
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type Copy number
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.13.13.M.Sc.2017.Ma.H 01010110073641000 22.09.2023 Thesis  
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة مخـــزن الرســائل الجـــامعية - البدروم 11.02.2024 Cai01.13.13.M.Sc.2017.Ma.H 01020110073641000 22.09.2023 CD - Rom 73641.CD