header

Breast cancer classification in ultras und oimages using transfer learning / (Record no. 80051)

MARC details
000 -LEADER
fixed length control field 02052cam a2200313 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-GiCUC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210228s2020 ua dh f m 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-GiCUC
Language of cataloging eng
Transcribing agency EG-GiCUC
041 0# - LANGUAGE CODE
Language code of text/sound track or separate title eng
049 ## - LOCAL HOLDINGS (OCLC)
Holding library Deposite
097 ## - Thesis Degree
Thesis Level M.Sc
099 ## - LOCAL FREE-TEXT CALL NUMBER (OCLC)
Classification number Cai01.13.03.M.Sc.2020.Ah.B
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmed Mostafa Salem Hijab
245 10 - TITLE STATEMENT
Title Breast cancer classification in ultras und oimages using transfer learning /
Statement of responsibility, etc. Ahmed Mostafa Salem Hijab ; Supervised Ayman M. Eldeib , Muhammad A. Rushdi
246 15 - VARYING FORM OF TITLE
Title proper/short title تصنيف سرطان الثدى فى صور الموجات فوق الصوتية باستخدام تعلم النقل
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Cairo :
Name of publisher, distributor, etc. Ahmed Mostafa Salem Hijab ,
Date of publication, distribution, etc. 2020
300 ## - PHYSICAL DESCRIPTION
Extent 54 P. :
Other physical details charts , facimiles ;
Dimensions 30cm
502 ## - DISSERTATION NOTE
Dissertation note Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Systems and Biomedical Engineering
520 ## - SUMMARY, ETC.
Summary, etc. We explored three versions of a deep learning solution to computer-aided detection of ultrasound images of cancerous tumor tissues. Experimentally, our work proved that the pre-trained VGG16 model has the best outputs in the fine-tuned version. In short, our test accuracy ranges from 79% to 97%. We employed data augmentation to enlarge the amount of training data, and avoid overfitting. We have also employed the VGG16 pre-trained model, and added practical fine tuning to improve precision.This work offers a path into developing realistic and versatile deep learning frameworks for detecting breast cancer.The findings suggest that the fine-tuned model with pre-training medical data has increased the classification accuracy.These frameworks should complement and provide assistance for approaches of clinical diagnosis and treatment
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Issued also as CD
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Breast lesion
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Convolutional neural networks
653 #4 - INDEX TERM--UNCONTROLLED
Uncontrolled term Ultrasound
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ayman M. Eldeib ,
Relator term
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Muhammad A. Rushdi ,
Relator term
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Nazla
Reviser Revisor
905 ## - LOCAL DATA ELEMENT E, LDE (RLIN)
Cataloger Shimaa
Reviser Cataloger
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
Holdings
Source of classification or shelving scheme Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Koha item type Copy number
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة قاعة الرسائل الجامعية - الدور الاول 11.02.2024 Cai01.13.03.M.Sc.2020.Ah.B 01010110082827000 22.09.2023 Thesis  
Dewey Decimal Classification   المكتبة المركزبة الجديدة - جامعة القاهرة مخـــزن الرســائل الجـــامعية - البدروم 11.02.2024 Cai01.13.03.M.Sc.2020.Ah.B 01020110082827000 22.09.2023 CD - Rom 82827.CD