header
Local cover image
Local cover image
Image from OpenLibrary

Intelligent social based student modeling / By Yomna Mahmoud Ibrahim Hassan; Supervisors Prof. Dr. Abeer EL Korany, Prof. Dr. Khaled Tawfik Wassif.

By: Contributor(s): Material type: TextTextLanguage: English Summary language: English, Arabic Producer: 2024Description: 128 Leaves : illustrations ; 30 cm. + CDContent type:
  • text
Media type:
  • Unmediated
Carrier type:
  • volume
Other title:
  • نموذج تعليمي ذكي للطالب بطريقة اجتماعية [Added title page title]
Subject(s): DDC classification:
  • 006.3
Available additional physical forms:
  • Issues also as CD.
Dissertation note: Thesis (Ph.D)-Cairo University, 2024. Summary: This thesis presents a framework called "Semantic-based Modeling Framework for Student Outcome Prediction" (SMFSOP) that automatically maps students' activities to a standardized behavioral model, specifically the Community of Inquiry model (CoI). The framework is divided into three phases: data gathering and preprocessing, automated mapping, clustering, and prediction. The framework has been tested on three real-life datasets, showing significant improvements in outcome prediction. The StudentLife Dataset showed a 3% increase in Adjusted R2 and a 2.375% decrease in MSE. The "Open university learning Analytics dataset" showed an accuracy improvement of 1.56% and a .3.1% increase in precision.Summary: في هذه الرسالة، يتم بلورة إطار عمل بعنوان “إطار نمذجة قائم على علم الدالالت لتوقع نتائج الطالب (SMFSOP) “، عن طريق توصيف أنشطة الطالب داخل بيئتهم التعليمية في نموذج سلوكي موحد بشكل تلقائي. استنادا إلى الأبحاث السابقة؛ يتم استخدام نموذج السلوك المجتمعي (CoI) للاستفادة منه كنموذج معمم. يتم استخدام التمثيل الطالبي الناتج لتصنيف الطلاب وتوقع النتيجة بناءا على مجموعتهم. و علي ذلك، ينقسم الإطار إلى ثلاث مراحل؛ جمع البيانات والمعالجة الأولية، و التعيين التلقائي، والتجميع والتوقع. يستخدم التعيين التلقائي التشابه الداللي بين أسماء/وصف السمات الطلابية ومؤشرات نموذج السلوك المجتمعي. لقد حسنت التجارب التي حققت ً أداء أفضل النتائج مستوي التوقع على النحو التالي: في مجموعة بيانات StudentLife، تم تعزيز 2R المعدل من٪ 95 إلى٪ 98 ,)و نقصMSE بنسبة٪ 2.375 ( من 0.126 إلى 0.031(. في مجموعة بيانات الشبكات االجتماعية، تم تحسين 2R المعدل بنسبة٪ 17 )من٪ 65 إلى٪ 82(. تقلص MSE بنسبة٪ 4.4 )من 0.164 إلى 0.12(. بالنسبة لمجموعة بيانات" تحليلات التعلم في الجامعة المفتوحة"(OULAD) تم تحسين الدقة بنسبة ،٪1.56 وتم تحسينF-1Score بقيمة0.014 . تم تحسين الدقة بنسبة %3.1.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Thesis Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.20.03.Ph.D.2024.Yo.I. (Browse shelf(Opens below)) Not for loan 01010110090540000

Thesis (Ph.D)-Cairo University, 2024.

Bibliography: pages 102-128.

This thesis presents a framework called "Semantic-based Modeling Framework for Student Outcome Prediction" (SMFSOP) that automatically maps students' activities to a standardized behavioral model, specifically the Community of Inquiry model (CoI). The framework is divided into three phases: data gathering and preprocessing, automated mapping, clustering, and prediction. The framework has been tested on three real-life datasets, showing significant improvements in outcome prediction. The StudentLife Dataset
showed a 3% increase in Adjusted R2 and a 2.375% decrease in MSE. The "Open university learning Analytics dataset" showed an accuracy improvement of 1.56% and a .3.1% increase in precision.

في هذه الرسالة، يتم بلورة إطار عمل بعنوان “إطار نمذجة قائم على علم الدالالت لتوقع نتائج الطالب (SMFSOP) “، عن طريق توصيف أنشطة الطالب داخل بيئتهم التعليمية في نموذج سلوكي موحد بشكل تلقائي. استنادا إلى الأبحاث السابقة؛ يتم استخدام نموذج السلوك المجتمعي (CoI) للاستفادة منه كنموذج معمم. يتم استخدام التمثيل الطالبي الناتج لتصنيف الطلاب وتوقع النتيجة بناءا على مجموعتهم. و علي ذلك، ينقسم الإطار إلى ثلاث مراحل؛ جمع البيانات والمعالجة الأولية، و التعيين التلقائي، والتجميع والتوقع. يستخدم التعيين التلقائي التشابه الداللي بين أسماء/وصف السمات الطلابية ومؤشرات نموذج السلوك المجتمعي. لقد حسنت التجارب التي حققت ً أداء أفضل النتائج مستوي التوقع على النحو التالي: في مجموعة بيانات StudentLife، تم تعزيز 2R المعدل من٪ 95 إلى٪ 98 ,)و نقصMSE بنسبة٪ 2.375 ( من 0.126 إلى 0.031(. في مجموعة بيانات الشبكات االجتماعية، تم تحسين 2R المعدل بنسبة٪ 17 )من٪ 65 إلى٪ 82(. تقلص MSE بنسبة٪ 4.4 )من 0.164 إلى 0.12(. بالنسبة لمجموعة بيانات" تحليلات التعلم في الجامعة المفتوحة"(OULAD) تم تحسين الدقة بنسبة ،٪1.56 وتم تحسينF-1Score بقيمة0.014 . تم تحسين الدقة بنسبة %3.1.

Issues also as CD.

Text in English and abstract in English.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image