Relaxation-based structure learning of dynamic bayesian Networks / Farida Mohamed Sabry Elsayed ; Supervised Nevin M. Darwish , Magda B. Fayek
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- تعلم هياكل شبكات بيزيان الديناميكية باسلوب الارخاء [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2009.Fa.R (Browse shelf(Opens below)) | Not for loan | 01010110051382000 | |||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2009.Fa.R (Browse shelf(Opens below)) | 51382.CD | Not for loan | 01020110051382000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.06.M.Sc.2008.Ne.P Planning complex processes for autonomous vehicles by means of genetic algorithms / | Cai01.13.06.M.Sc.2009.Ah.F Fast rendering of caustics in cinematic previewing using object dependent photon maps / | Cai01.13.06.M.Sc.2009.Ah.F Fast rendering of caustics in cinematic previewing using object dependent photon maps / | Cai01.13.06.M.Sc.2009.Fa.R Relaxation-based structure learning of dynamic bayesian Networks / | Cai01.13.06.M.Sc.2009.Fa.R Relaxation-based structure learning of dynamic bayesian Networks / | Cai01.13.06.M.Sc.2009.Ge.C Compression techniques for geophysical seismic DATA / | Cai01.13.06.M.Sc.2009.Ge.C Compression techniques for geophysical seismic DATA / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
Learning DBN structures from data is a relatively new research direction. This work uses probabilistic relaxation for learning dynamic bayesian network structures from data. The existence of an edge in the network is not considered as a hard or deterministic issue, but rather we assign a certain probability for the existence of each edge
Issued also as CD
There are no comments on this title.