Dynamics and stability of GUN barrels with moving bullets / Amir Mohamed Wagih ; Supervised Hani M. Negm
Material type: TextLanguage: English Publication details: Cairo : Amir Mohamed Wagih , 2009Description: 78 P. : plans ; 30cmOther title:- ديناميات واستقرار مواسير المدافع مع وجود مقذوف متحرك [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.01.M.Sc.2009.Am.D (Browse shelf(Opens below)) | Not for loan | 01010110051820000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.01.M.Sc.2009.Am.D (Browse shelf(Opens below)) | 51820.CD | Not for loan | 01020110051820000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.01.M.Sc.2008.Mo.V Variable fidelity design optimization of subsonic aircraft air intake / | Cai01.13.01.M.Sc.2008.Wa.O Optimum flutter design of slender , swept , composite wings / | Cai01.13.01.M.Sc.2008.Wa.O Optimum flutter design of slender , swept , composite wings / | Cai01.13.01.M.Sc.2009.Am.D Dynamics and stability of GUN barrels with moving bullets / | Cai01.13.01.M.Sc.2009.Am.D Dynamics and stability of GUN barrels with moving bullets / | Cai01.13.01.M.Sc.2009.Me.M A model for design optimization of a light trainer wing / | Cai01.13.01.M.Sc.2009.Me.M A model for design optimization of a light trainer wing / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Aerospace Engineering
In the present study, the stability of a timoshenko beam under the effect of a moving projectile will be reintroduced using simple eigenvalue analysis of a finite element model. The eigenvalues of the beam changes with the mass, speed, and position of the projectile, thus, the eigenvalues are evaluated for the system with different speeds and masses at different position until the lowest eigenvalue reaches zero indicating the unstability occurrence
Issued also as CD
There are no comments on this title.