A proposed technique to build a classifier for insurance industry / Refaay Ahmed Zidan ; Supervised Ghazal A. Ghazal , Bahaa Helmi , Mervat H. Gheith
Material type:
- أسلوب مقترح لبناء مصنف لصناعة التأمين [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.02.M.Sc.2010.Re.P (Browse shelf(Opens below)) | Not for loan | 01010110053044000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.02.M.Sc.2010.Re.P (Browse shelf(Opens below)) | 53044.CD | Not for loan | 01020110053044000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.18.02.M.Sc.2010.Na.F Framework for knowledge management on the semantic web for E-learning / | Cai01.18.02.M.Sc.2010.Na.F Framework for knowledge management on the semantic web for E-learning / | Cai01.18.02.M.Sc.2010.Re.P A proposed technique to build a classifier for insurance industry / | Cai01.18.02.M.Sc.2010.Re.P A proposed technique to build a classifier for insurance industry / | Cai01.18.02.M.Sc.2010.Sh.E Enhancements for particle swarm optimization (PSO) algorithm / | Cai01.18.02.M.Sc.2010.Sh.E Enhancements for particle swarm optimization (PSO) algorithm / | Cai01.18.02.M.Sc.2011.Ab.G General purpose Arabic morphological analyzer and generator / |
Thesis (M.Sc.) - Cairo University - Institute of Statistical Studies and Research - Department of Computer and Information Sciences
Insurance databases continue to grow very fast . This large amount of stored data contains valuable hidden knowledge . We can use this data to predict models representing the behavior of potential and current customers to improve the decision making process of insurance . Associative Classification combines association rule ming and classification to form an accurate classifier
Issued also as CD
There are no comments on this title.