Hybrid optimization techniques for cancer diagnosis models / Nermeen Kamel Abdelmoniem ; Supervised L . F . Abdelal , N . H . Sweilam , A . A . Tharwat
Material type:
- التقنيات الامثلية المهجنه لتشخيص مرض السرطان [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.12.17.M.Sc.2010.Ne.H (Browse shelf(Opens below)) | Not for loan | 01010110054655000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.12.17.M.Sc.2010.Ne.H (Browse shelf(Opens below)) | 54655.CD | Not for loan | 01020110054655000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.12.17.M.Sc.2010.Ay.M Multigrid - finite element method for partial differential equations and their optimal control / | Cai01.12.17.M.Sc.2010.Ay.M Multigrid - finite element method for partial differential equations and their optimal control / | Cai01.12.17.M.Sc.2010.Ne.H Hybrid optimization techniques for cancer diagnosis models / | Cai01.12.17.M.Sc.2010.Ne.H Hybrid optimization techniques for cancer diagnosis models / | Cai01.12.17.M.Sc.2010.Sa.A Asymptotic behavior of non-linear difference equation / | Cai01.12.17.M.Sc.2010.Sa.A Asymptotic behavior of non-linear difference equation / | Cai01.12.17.M.Sc.2010.Wa.A Analysis of the system of linear algebraic equations arising from the solution of some plane boundry - value problems in a rectangular region when using the boundary fourier expansion method / |
Thesis (M.Sc.) - Cairo University - Faculty of Science - Department of Mathematics
Suport vector machine has become an increasingly popular tool for machine learning tasks involving classification regression or novelty detection . Training a support vector machine requires the solution of a very large quadratic programming problem . Ttaditional optimization methods cannot be directly applied due to memory restrictions . Up to now several approaches exist for circumventing the above shortcomings and work well
Issued also as CD
There are no comments on this title.