Using data mining techniques to determine predictors of hepatitis C virus treatment response / AbuBakr Hussien Mahmoud Awad ; Supervised Ibrahim Farag Abdelrahman , Ahmed Hussien Kamal
Material type:
- إستخدام تقنيات التنقيب فى البيانات لتحديد مستدلات الإستجابة لعلاج الفيروس الكبدى سى [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2012.Ab.U (Browse shelf(Opens below)) | Not for loan | 01010110058678000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2012.Ab.U (Browse shelf(Opens below)) | 58678.CD | Not for loan | 01020110058678000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.20.03.M.Sc.2012.Ab.A Anti- jamming in wireless networks using channel hopping and error correcting code / | Cai01.20.03.M.Sc.2012.Ab.I An intelligent E - learning system for math course / | Cai01.20.03.M.Sc.2012.Ab.I An intelligent E - learning system for math course / | Cai01.20.03.M.Sc.2012.Ab.U Using data mining techniques to determine predictors of hepatitis C virus treatment response / | Cai01.20.03.M.Sc.2012.Ab.U Using data mining techniques to determine predictors of hepatitis C virus treatment response / | Cai01.20.03.M.Sc.2012.Am.M Microarray analysis using computational techniques / | Cai01.20.03.M.Sc.2012.Am.M Microarray analysis using computational techniques / |
Thesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
Egypt has a heavy burden of HCV infection (10%). The aim of this work is to develop a series of predictive models that can predict patients who are likely to respond to optimize the cost of treatment. This study included 2962 HCV patient. Data cleansing, auditing and feature selection were done. We constructed three decision tree learning algorithms-C4.5, CART, FDTL
Issued also as CD
There are no comments on this title.