Outlier values identification in data mining applications / Ayman Taha Awad Allah Mohammed Farahat ; Supervised Osman M. Hegazy , Ali S. Hadi , Kareem M. Darwish
Material type:
- اكتــشاف القيــم الغيـــر نمطيـة فى تطبيقات التنقيب فى البيانات [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.04.M.Sc.2013.Ay.O (Browse shelf(Opens below)) | Not for loan | 01010110063306000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.04.M.Sc.2013.Ay.O (Browse shelf(Opens below)) | 63306.CD | Not for loan | 01020110063306000 |
Thesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Information Systems
Outliers identification algorithms for categorical data usually take long computational time.They also strongly depend on parameter settings that require prior information about the data,e.g.,number of outliers in the data, maximum length of itemsets and/or minimum support for frequent itemsets.These input parameters are classified into two groups;(a)in-trinsic parameters which are required by an outliers detection method to produce a score for each object and(b) decision parameters which are required to decide if anobject is an out-lier based on the score
Issued also as CD
There are no comments on this title.