Exemplars combination using genetic algorithm for accurate face landmark localization / Mostafa Mohamed Izz Eldin Shehata ; Supervised Elsayed E. Hemayed ,
Material type:
- دمج النماذج باستخدام الخوارزميات الجينية لتحديد علامات الوجه المميزة بدقة [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2014.Mo.E (Browse shelf(Opens below)) | Not for loan | 01010110064833000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2014.Mo.E (Browse shelf(Opens below)) | 64833.CD | Not for loan | 01020110064833000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.06.M.Sc.2014.Ma.D Distributed directory cache coherence for multi - core systems / | Cai01.13.06.M.Sc.2014.Ma.D Distributed directory cache coherence for multi - core systems / | Cai01.13.06.M.Sc.2014.Mo.E Exemplars combination using genetic algorithm for accurate face landmark localization / | Cai01.13.06.M.Sc.2014.Mo.E Exemplars combination using genetic algorithm for accurate face landmark localization / | Cai01.13.06.M.Sc.2014.Mo.I Identifying worst - case test vectors for leakage current and delay failures induced by total dose in CMOS ASIC / | Cai01.13.06.M.Sc.2014.Mo.I Identifying worst - case test vectors for leakage current and delay failures induced by total dose in CMOS ASIC / | Cai01.13.06.M.Sc.2015.Ab.T Towards sketch-based user interface : Domain - independent online sketch recognition system / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
Accurate face landmarks localization is one of the fundamental steps in many computer vision problems. In this thesis we propose a method for accurately localizing these landmarks based on: (1) modeling faces as non- linear combination of exemplars; (2) the model and optimization is done using genetic algorithm to best model this problem. Performance evaluation of our EC-GA algorithm showed that our algorithm outperformed many sate-of-art methods on di{uFB00}erent public datasets
Issued also as CD
There are no comments on this title.