A discontinuous galerkin finite element model for two-dimensional shallow water equations / Waddaa Mohamed Hosban Aboulatta ; Supervised Mamdouh A. Fahmy , Tamer H. M. A. Kasem
Material type:
- نموذج لحل معدلات المياه الضحلة فى بعدين باستخدام طريقة جالركين الغير متصلة للعناصر المحددة [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2014.Wa.D (Browse shelf(Opens below)) | Not for loan | 01010110065030000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2014.Wa.D (Browse shelf(Opens below)) | 65030.CD | Not for loan | 01020110065030000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.12.M.Sc.2014.Mo.S Simulation of mine fires and their effect on ventilation system / | Cai01.13.12.M.Sc.2014.Mo.S Simulation of mine fires and their effect on ventilation system / | Cai01.13.12.M.Sc.2014.Wa.D A discontinuous galerkin finite element model for two-dimensional shallow water equations / | Cai01.13.12.M.Sc.2014.Wa.D A discontinuous galerkin finite element model for two-dimensional shallow water equations / | Cai01.13.12.M.Sc.2015.Ab.P Parameters affecting ultra-fine grinding of talc ore / | Cai01.13.12.M.Sc.2015.Ab.P Parameters affecting ultra-fine grinding of talc ore / | Cai01.13.12.M.Sc.2015.Ah.M Modification of mechanical properties of 6351 Al - Mg - Si alloy by aging heat treatment / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mathematics and Physics
The strong accelerations appear in two major forms: i) high-gradient flows, and ii) convection-dominated flows. These flows can be modeled by the shallow water equations (SWE), a set of coupled non-linear hyperbolic partial differential equations. A numerical model for the solutions of the SWE based on DG-FEM is developed and tested for validity. The model combines the advantages of both the CG-FEM and FVM. The DG-FEM is first used to model one-dimensional flows with discontinuities. Secondly, the DG-FEM is used to model two-dimensional strongly accelerated flows
Issued also as CD
There are no comments on this title.