Estimation of some distribution parameters with incomplete data / Alaa Sayed Shehata ; Supervised Ahmed Amin Elsheikh , Naglaa Abdelmoneim Morad
Material type:
- تقدير معالم بعض التوزيعات ببيانات غير مكتملة [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.04.M.Sc.2014.Al.E (Browse shelf(Opens below)) | Not for loan | 01010110065972000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.04.M.Sc.2014.Al.E (Browse shelf(Opens below)) | 65972.CD | Not for loan | 01020110065972000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.18.04.M.Sc.2014.Ab.S State space modeling of time series and dynamic econometric models / | Cai01.18.04.M.Sc.2014.Ab.S State space modeling of time series and dynamic econometric models / | Cai01.18.04.M.Sc.2014.Al.E Estimation of some distribution parameters with incomplete data / | Cai01.18.04.M.Sc.2014.Al.E Estimation of some distribution parameters with incomplete data / | Cai01.18.04.M.Sc.2014.Ho.C A comparative study of unit roots tests in panel data / | Cai01.18.04.M.Sc.2014.Ho.C A comparative study of unit roots tests in panel data / | Cai01.18.04.M.Sc.2014.Mo.E Estimating parameters in some ANCOVA Models with non- normal error distributions / |
Thesis (M.Sc.) - Cairo University - Institute of Statistical Studies and Research - Department of Statistics and Econometrics
There are small differences between mean square error in case of the three methods (maximum likelihood method, listwise deletion method and mean imputation). The difficulty of obtaining the values of estimators (k_1,k_2,k) using maximum likelihood method, in this method, it is replaced missing data by zero and because these estimators consist of log (variable), log (zero) is not defined. But it is possible to find a solution to this problem by removing the row which consists of missing data i.e. replacing maximum likelihood method by listwise deletion method. If you are interested in parameter k, It is better to use mean imputation method. If you are interested in parameter k, It is better to use listwise deletion method. When percentage of missing data increases, for parameter k, It is better to use mean imputation or maximum likelihood method. For parameter k, It is better to use listwise deletion method. When sample size increases, for parameter k, It is better to use mean imputation method. For parameter k, It is better to use listwise deletion method. For Geometric distribution: There are small differences between mean square error in case of three methods (maximum likelihood method, listwise deletion method and mean imputation). It is better to use mean imputation method i.e the mean square error of parameters is the smallest using mean imputation method
Issued also as CD
There are no comments on this title.