Machine learning based spectrum sensing techniques in cognitive radio / Ahmed Galal Ahmed Mohammed ; Supervised Reda Elkhoribi , Mahmoud Ahmed Ismail
Material type:
- استشعار الطيف انترددى بإستخدام آليات انتعلم فى الراديو الإدراكى [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.01.M.Sc.2015.Ah.M (Browse shelf(Opens below)) | Not for loan | 01010110067107000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.01.M.Sc.2015.Ah.M (Browse shelf(Opens below)) | 67107.CD | Not for loan | 01020110067107000 |
Thesis (M.Sc.) - Cairo University - Faculty of Computer and Information - Department of Information Technology
We implement and design 8 digital modulations are: 2ASK, 2FSK, 4ASK, 4FSK, 2PSK, 4PSK, DPSK, and 16QAM. The maximum value of spectral density of normalized centered amplitude and the average value of normalized absolute centered instantaneous phase deviation choose as key features for digital modulation recognizer based on the ANN. We used the Rayleigh fading channel to model signals propagation and corrupted the signals by additive white gaussian noise (AWGN) for testing the algorithm. The simulation results show that the ANN could be recognized the different types of the PUs and corrected classify the signals in its current state of development
Issued also as CD
There are no comments on this title.