header
Local cover image
Local cover image
Image from OpenLibrary

Synthesis and characterization of ZnO-Cu₂O core shell nanowires for solar energy applications / Alaa yahia faid ; Supervised Saad.M. Elraghy , Randa Abdelkarim

By: Contributor(s): Material type: TextTextLanguage: English Publication details: Cairo : Alaa yahia faid , 2016Description: 97 P. : charts , facsimiles ; 30cmOther title:
  • تحضير وتوص{u٠٦أأ}ف اسلاك نانو{u٠٦أأ}ة من أكس{u٠٦أأ}د الزنك -أكس{u٠٦أأ}د النحاس لتطب{u٠٦أأ}قات الخلا{u٠٦أأ}ا الشمس{u٠٦أأ}ة [Added title page title]
Subject(s): Online resources: Available additional physical forms:
  • Issued also as CD
Dissertation note: Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering Summary: Research into nanomaterials has become more and more popular because of their unique properties compared to bulk materials. Amongst various functional materials, zinc oxide (ZnO), with a direct electron energy band gap of 3.34 eV at room temperature, is an important optoelectronic material with an intrinsically n-type semiconducting property. However, to form a p-type ZnO semiconductor is still a challenge. Copper oxide , compared to ZnO, has a much smaller band gap, 1.2 eV, and shows an intrinsically p-type semiconducting property. It has been suggested that when Cu₂O is alloyed with ZnO properly, a p-n semiconductor heterojunction can be formed to be utilized in solar cell and gas sensor applications. In this thesis, ZnO/Cu₂O core-shell nanowire arrays have been successfully fabricated by a simple two-step process. ZnO nanowire arrays were first grown by the anodization method using Zn foil substrates. Copper then was deposited on as-grown ZnO nanowire arrays by chemical bath deposition method. ZnO/Cu₂O core-shell nanowire arrays have exhibited better photoelectrochemical efficiency in visible region as compared to the pure ZnO nanowire arrays, which suggests that ZnO/Cu₂O core-shell nanowire arrays have strong potential as nanoscale building blocks in solar cells and light emission devices
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Copy number Status Barcode
Thesis Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.13.12.M.Sc.2016.Al.S (Browse shelf(Opens below)) Not for loan 01010110070678000
CD - Rom CD - Rom مخـــزن الرســائل الجـــامعية - البدروم المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.13.12.M.Sc.2016.Al.S (Browse shelf(Opens below)) 70678.CD Not for loan 01020110070678000

Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering

Research into nanomaterials has become more and more popular because of their unique properties compared to bulk materials. Amongst various functional materials, zinc oxide (ZnO), with a direct electron energy band gap of 3.34 eV at room temperature, is an important optoelectronic material with an intrinsically n-type semiconducting property. However, to form a p-type ZnO semiconductor is still a challenge. Copper oxide , compared to ZnO, has a much smaller band gap, 1.2 eV, and shows an intrinsically p-type semiconducting property. It has been suggested that when Cu₂O is alloyed with ZnO properly, a p-n semiconductor heterojunction can be formed to be utilized in solar cell and gas sensor applications. In this thesis, ZnO/Cu₂O core-shell nanowire arrays have been successfully fabricated by a simple two-step process. ZnO nanowire arrays were first grown by the anodization method using Zn foil substrates. Copper then was deposited on as-grown ZnO nanowire arrays by chemical bath deposition method. ZnO/Cu₂O core-shell nanowire arrays have exhibited better photoelectrochemical efficiency in visible region as compared to the pure ZnO nanowire arrays, which suggests that ZnO/Cu₂O core-shell nanowire arrays have strong potential as nanoscale building blocks in solar cells and light emission devices

Issued also as CD

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image