Compromised node detection using hierarchical fuzzy logic and feature reduction / Ahmed Shawki Bayoumi Abu Daia ; Supervised Magda B. Fayek , Rabie A. Ramadan
Material type: TextLanguage: English Publication details: Cairo : Ahmed Shawki Bayoumi Abu Daia , 2017Description: 133 P. : charts ; 30cmOther title:- إكتشاف النقاط المخترقة في الشبكات اللاسلكية باستخدام المنطق الضبابي الهرمي مع تقليل عدد الخصائص [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2017.Ah.C (Browse shelf(Opens below)) | Not for loan | 01010110072944000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.M.Sc.2017.Ah.C (Browse shelf(Opens below)) | 72944.CD | Not for loan | 01020110072944000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.06.M.Sc.2016.Sh.U Using MID and high level visual features for surgical workflow detection in cholecystectomy procedures / | Cai01.13.06.M.Sc.2017.Ah.A Approaches for solving concept drift in recommendation systems / | Cai01.13.06.M.Sc.2017.Ah.A Approaches for solving concept drift in recommendation systems / | Cai01.13.06.M.Sc.2017.Ah.C Compromised node detection using hierarchical fuzzy logic and feature reduction / | Cai01.13.06.M.Sc.2017.Ah.C Compromised node detection using hierarchical fuzzy logic and feature reduction / | Cai01.13.06.M.Sc.2017.Am.O Object recognition using deep convolutional neural networks / | Cai01.13.06.M.Sc.2017.Am.O Object recognition using deep convolutional neural networks / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
This research proposes a hierarchal fuzzy logic system used for detecting the compromised or attacked nodes in wireless networks. The proposed system is composed of three hierarchal layers and each layer composed of concrete components built using the Fuzzy Unordered Rule Induction Algorithm (FURIA) fuzzy logic. The Particle Swarm Optimization (PSO) technique is used at the data preprocessing phase to reduce the significant features number. We used NSL-KDD dataset for the training and evaluation phases, and the WEKA is the environment used for experiments
Issued also as CD
There are no comments on this title.