Layout analysis of arabic documents / Amany Mohamed Hesham Farouk ; Supervised Ibrahim Farag , Amr Badr , Sherif Abdou
Material type:
- تحليل التنسيق في الوثائق العربية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2017.Am.L (Browse shelf(Opens below)) | Not for loan | 01010110073775000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.20.03.M.Sc.2017.Am.L (Browse shelf(Opens below)) | 73775.CD | Not for loan | 01020110073775000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.20.03.M.Sc.2017.Al.C Computational selection of cancer DNA methylation genes / | Cai01.20.03.M.Sc.2017.Al.C Computational selection of cancer DNA methylation genes / | Cai01.20.03.M.Sc.2017.Am.L Layout analysis of arabic documents / | Cai01.20.03.M.Sc.2017.Am.L Layout analysis of arabic documents / | Cai01.20.03.M.Sc.2017.Am.O An opinion mining extractor for arabic social media / | Cai01.20.03.M.Sc.2017.Am.O An opinion mining extractor for arabic social media / | Cai01.20.03.M.Sc.2017.Ay.E Enhancing multi-objective optimization using genetic programming / |
Thesis (M.Sc.) - Cairo University - Faculty of Computers and Information - Department of Computer Science
Document layout analysis is important in converting document images into text. Arabic script cursive nature and different writing styles cause challenges. In this work, we introduce an approach for segmenting image into zones. Text zones are segmented into lines and then words. System accuracy achieved is 93.2% for zone classification and 98.3% for line segmentation. Also, a posteriori, word based and font-size invariant approach for font recognition using textural features based on cosine transform is proposed. Results show that the average recognition rate is 93.2%
Issued also as CD
There are no comments on this title.