Prediction of hydraulic properties in carbonate reservoirs using artificial neural network / Khalaf Gad Salem Ibrahim ; Supervised Abdelsattar A. Dahab , Abdulaziz M. Abdulaziz
Material type: TextLanguage: English Publication details: Cairo : Khalaf Gad Salem Ibrahim , 2017Description: 105 P. : charts , facsimiles ; 30cmOther title:- التنبؤ بالخواص الهيدروليكية فى الخزانات الجيرية باستخدام الشبكة العصبية الصناعية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2017.Kh.P (Browse shelf(Opens below)) | Not for loan | 01010110074230000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2017.Kh.P (Browse shelf(Opens below)) | 74230.CD | Not for loan | 01020110074230000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.12.M.Sc.2017.Kh.D Developingofa computer program for natural gas networks design / | Cai01.13.12.M.Sc.2017.Kh.D Developingofa computer program for natural gas networks design / | Cai01.13.12.M.Sc.2017.Kh.P Prediction of hydraulic properties in carbonate reservoirs using artificial neural network / | Cai01.13.12.M.Sc.2017.Kh.P Prediction of hydraulic properties in carbonate reservoirs using artificial neural network / | Cai01.13.12.M.Sc.2017.Kh.S Study of blasting influence on saving ore size reduction energy / | Cai01.13.12.M.Sc.2017.Kh.S Study of blasting influence on saving ore size reduction energy / | Cai01.13.12.M.Sc.2017.Ma.H Hydroxyapatite precipitation on Ti-6Al-4V and Ti-6Al-7Nb alloys : Effect of surface conditions / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
The success of applying artificial neural networks (ANNs) to solve complex engineering problems has drawn attention to its potential applications in the petroleum industry especially in formation evaluation. In the present study, models are developed to predict the hydraulic properties (porosity and permeability) in carbonate reservoir from well logging measurements using ANN. The developed ANN model for carbonate reservoir is constructed and validated using numerous dataset collected from various worldwide carbonate reservoirs
Issued also as CD
There are no comments on this title.