Semi-supervised classification using natural-based computation / Shahira Shaaban Azab Ahmed ; Supervised Mohamed Farouk Abdelhady , Hesham Ahmed Hefny
Material type:
- التصنيف شبه الإشرافي باستخدام الحوسبة المستوحاة من الطبيعة [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.02.Ph.D.2017.Sh.S (Browse shelf(Opens below)) | Not for loan | 01010110075111000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.02.Ph.D.2017.Sh.S (Browse shelf(Opens below)) | 75111.CD | Not for loan | 01020110075111000 |
Thesis (Ph.D.) - Cairo University - Institute of Statistical Studies and Research - Department of Computer and Information Science
This Thesis presents a cluster-and-label model using PSO to optimize the cluster centroid. In addition, labeled data are used to label cluster and guide clustering process. In some domains, the number of clusters in semi-supervised classification is unknown as in the Automatic Knowledgebase Construction. This thesis proposes an algorithm 2ESPSO3 to detect the number of clusters in the dataset by using PSO to optimize silhouette score. Then, the detected numbers of clusters are used in exploratory semi-supervised classification tasks with an unanticipated cluster
Issued also as CD
There are no comments on this title.