صورة الغلاف المحلية
صورة الغلاف المحلية
صور من OpenLibrary

Solar radiation modeling using advanced statistical and machine learning techniques / Muhammed Abdullah Hassan Ahmed ; Supervised Adel Khalil Hassan Khalil , Sayed Ahmed Kaseb , Mahmoud Abdelwahab Kassem

بواسطة: المساهم: نوع المادة : نصنصاللغة: الإنجليزية تفاصيل النشر: Cairo : Muhammed Abdullah Hassan Ahmed , 2017الوصف: 236 P. : charts , facsimiles ; 30cmعنوان آخر:
  • نمذجة الإشعاع الشمسي باستخدام طرق إحصاء وتعلم آلي متقدمة [عنوان مضاف عنوان الصفحة]
الموضوع: موارد على الإنترنت: Available additional physical forms:
  • Issued also as CD
ملاحظة الأطروحة: Thesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Mechanical Power Engineering ملخص: In this study, the different solar radiation components (i.e. global, diffuse, normal and tilted radiations) are measured at different solar-meteorological stations in high time resolution (one- or 10-minute time steps) and used to develop new models for all solar radiation components using different machine learning and statistical algorithms. The machine learning algorithms include the multi-layer perceptron (MLP), support vector machines (SVM), adaptive neuro-fuzzy inference system (ANFIS), decision trees (DT), and ensemble methods (gradient boosting, bagging and random forest 2RF3). In addition to these stochastic algorithms, time series techniques have also been considered, including the auto-regressive integrated moving-average method (ARIMA), the non-linear auto-regressive neural networks (NAR), and the non-linear auto-regressive neural networks with exogenous inputs (NARX). Simple regression (empirical) models have been recalibrated or newly suggested in order to determine the improvement in prediction accuracy offered by the machine learning techniques. To assess the superiority of the new methods, different locations have been considered, including two stations in Cairo, Egypt, and nine other stations in five different countries in the MENA (Middle-East and North-Africa) region
وسوم من هذه المكتبة: لا توجد وسوم لهذا العنوان في هذه المكتبة. قم بتسجيل الدخول لإضافة الوسوم.
التقييم باستخدام النجوم
    متوسط التقييم: 0.0 (0 صوتًا)
المقتنيات
نوع المادة المكتبة الحالية المكتبة الرئيسية رقم الاستدعاء رقم النسخة حالة الباركود
Thesis Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.13.11.Ph.D.2017.Mu.S (استعراض الرف(يفتح أدناه)) لا تعار 01010110075121000
CD - Rom CD - Rom مخـــزن الرســائل الجـــامعية - البدروم المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.13.11.Ph.D.2017.Mu.S (استعراض الرف(يفتح أدناه)) 75121.CD لا تعار 01020110075121000

Thesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Mechanical Power Engineering

In this study, the different solar radiation components (i.e. global, diffuse, normal and tilted radiations) are measured at different solar-meteorological stations in high time resolution (one- or 10-minute time steps) and used to develop new models for all solar radiation components using different machine learning and statistical algorithms. The machine learning algorithms include the multi-layer perceptron (MLP), support vector machines (SVM), adaptive neuro-fuzzy inference system (ANFIS), decision trees (DT), and ensemble methods (gradient boosting, bagging and random forest 2RF3). In addition to these stochastic algorithms, time series techniques have also been considered, including the auto-regressive integrated moving-average method (ARIMA), the non-linear auto-regressive neural networks (NAR), and the non-linear auto-regressive neural networks with exogenous inputs (NARX). Simple regression (empirical) models have been recalibrated or newly suggested in order to determine the improvement in prediction accuracy offered by the machine learning techniques. To assess the superiority of the new methods, different locations have been considered, including two stations in Cairo, Egypt, and nine other stations in five different countries in the MENA (Middle-East and North-Africa) region

Issued also as CD

لا توجد تعليقات على هذا العنوان.

اضغط على الصورة لمشاهدتها في عارض الصور

صورة الغلاف المحلية
شارك
Cairo University Libraries Gateway Implemented & Customized by: Eng. M. Mohamady Contacts: info@cl.cu.edu.eg | info@cnul.cu.edu.eg
CUCL logo CNUL logo
© All rights reserved — Cairo University Libraries
Under the supervision of New Central Library Manager
CUCL logo
Implemented & Customized by: Eng. M. Mohamady Contact: info@cl.cu.edu.eg © All rights reserved — New Central Library
Under the supervision of Cairo National University Library Manager
CNUL logo
Implemented & Customized by: Eng. M. Mohamady Contact: info@cnul.cu.edu.eg © All rights reserved — Cairo National University Library