Enhancing plasmonic photovoltaic using embedded metal nanoparticles / Marina Medhat Rassmi Melek ; Supervised Alaa K. Abdelmageed , Ezzeldin A. Soliman , Yasser M. Elbatawy
Material type:
- تحسين الخلايا الضوئيه البلازمونيه عن طريق دمجها بجسيمات معدنيه نانومتريه [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.10.M.Sc.2017.Ma.E (Browse shelf(Opens below)) | Not for loan | 01010110075132000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.10.M.Sc.2017.Ma.E (Browse shelf(Opens below)) | 75132.CD | Not for loan | 01020110075132000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.10.M.Sc.2017.Hu.D Design of interference-based all optical photonic crystal logic gates / | Cai01.13.10.M.Sc.2017.Iv.H Heat transfer enhancement of nanofluids in forced convection finite element model / | Cai01.13.10.M.Sc.2017.Iv.H Heat transfer enhancement of nanofluids in forced convection finite element model / | Cai01.13.10.M.Sc.2017.Ma.E Enhancing plasmonic photovoltaic using embedded metal nanoparticles / | Cai01.13.10.M.Sc.2017.Ma.E Enhancing plasmonic photovoltaic using embedded metal nanoparticles / | Cai01.13.10.M.Sc.2017.Ma.G Galerkin-least-squares FEM on a GPU architecture for viscoelastic fluids / | Cai01.13.10.M.Sc.2017.Ma.G Galerkin-least-squares FEM on a GPU architecture for viscoelastic fluids / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Mathematics and Physics
Plasmonic Photovoltaic is apromising way to enhance the thin {uFB01}lm photovoltaic(PV) e{uFB03}ciency. Gear shape nanoparticles are introduced to enhance the PV e{uFB03}ciency via increasing the power absorbed by the PV semiconductor in the visible and near infrared ranges. The modes of the gear nanoparticles are investigated. A parametric study is performed that demonstrates how the design parameters of the proposed nanoparticles can be engineered for best power absorption within Si. A Figure of Merit (FoM) is de{uFB01}ned that consider all objectives. An optimization process is carried out and the optimum gear{u2019}s dimensions, penetration depth, and periodicity are obtained for the maximum FoM. Then, a model for PIN-PV with embedded gear nanoparticles is presented for 1D and 2D structures. The enhancement of the embedded gear nanoparticles on the J-V characteristics of the PV is studied, and J-V characteristics corresponding to maximum FoM is presented
Issued also as CD
There are no comments on this title.