Learning to rank for spoken content transcriptions / Farida Mohamed Sabry ; Supervised Nevin Darwish , Mayada Hadhoud
Material type:
- التعلم ا{uئإئ٥}لى لتصنيف نتائج بحث المحتوى المنطوق [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2018.Fa.L (Browse shelf(Opens below)) | Not for loan | 01010110076037000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2018.Fa.L (Browse shelf(Opens below)) | 76037.CD | Not for loan | 01020110076037000 |
Thesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
This thesis addresses the problem of ranking of spoken content retrieval (SCR). It shows the effectiveness of applying learning to rank techniques for the ranking of transcriptions based on features extracted from the metadata and the timed spoken content transcription with respect to one of the base- line unsupervised traditional scoring. Algorithms for reduction and bagging of features are implemented that outperform the state-of-art algorithms
Issued also as CD
There are no comments on this title.