Fracture resistance of E.max CAD implant superstructures cemented on lithium disilicate hybrid abutments and zirconia hybrid abutments : An in-vitro study / Amr Hussein Aziz Hassan ; Supervised Hanaa Ibrahim Sallam , Rasha Nabil Sami
Material type: TextLanguage: English Publication details: Cairo : Amr Hussein Aziz Hassan , 2018Description: 86 P. : charts , facsimiles , photographs ; 25cmOther title:- مقاومة الكسر لتركيبات الايماكس كاد فوق الغرسات والمثبتة بالأسمنت على الدعامات الهجينة من الليثيام ثنائي السيليكات والزركونيا : دراسة معملية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.09.09.M.Sc.2018.Am.F (Browse shelf(Opens below)) | Not for loan | 01010110076540000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.09.09.M.Sc.2018.Am.F (Browse shelf(Opens below)) | 76540.CD | Not for loan | 01020110076540000 |
Thesis (M.Sc.) - Cairo University - Faculty of Oral and Dental Medicine - Department of Prosthodontics
This in-vitro study was designed to evaluate the fracture resistance of e.max CAD implant superstructures cemented on lithium-disilicate hybrid abutments and zirconia hybrid abutments. . The increased esthetic demands among patients together with the recent developed allceramic systems, encouraged the selection of zirconia and lithium-disilicate CAD material for our study. . Fourteen implants were inserted in epoxy resin blocks and divided into two main groups according to the type of the abutment material (7 specimen /group) :Zirconia group: zirconia hybrid abutments with IPs e.max CAD superstructures Lithium-disilicate group: IPs e.max CAD hybrid abutments with IPs e.max CAD superstructures Zirconia and IPS e.max abutments were CAD/CAM constructed following the manufacture recommendations according to standardized protocol. Ceramic abutments were cemented to their corresponding titanium bases by adhesive resin cement , then screwed to their corresponding implants. IPs e.max CAD superstructures were CAD/CAM fabricated and cemented to the abutments in both groups with temporary cement using specially constructed cementing device to standardize the cementing load for all samples. Fracture resistance test for all samples was carried out using a universal testing machine and fracture mode of superstructures in each group were visually analyzed. Data were statistically analyzed and the results showed that e max superstructures cemented on hybrid zirconia abutments recorded statistically significantly higher mean fracture resistance mean values than those cemented on hybrid lithium disilicate hybrid abutments. Regarding failure mode results, all superstructures showed catastrophic
Issued also as CD
There are no comments on this title.