Parallelization of sequential computer vision algorithms on big-data using distributed chunk-based framework / Norhan Magdi Sayed Osman ; Supervised Hossam Aly Hassan Fahmy , Mohamed Mohamed Rehan
Material type:
- موازاة خوارزميات رؤية الحاسب المتسلسلة على البيانات الضخمة باستخدام إطار توزيع أجزاء البيانات [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.08.M.Sc.2018.No.P (Browse shelf(Opens below)) | Not for loan | 01010110077598000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.08.M.Sc.2018.No.P (Browse shelf(Opens below)) | 77598.CD | Not for loan | 01020110077598000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Electronics and Communication
In this thesis, we propose a complete framework that enables big-data frameworks to run sequential computer vision algorithms in a scalable and parallel way. Our idea is to divide the input video files into small chunks that can be processed in parallel without affecting the quality of the resulting output. We developed an intelligent data grouping that enables chunk-based framework to distribute these data chunks among the available resources and gather the results out of each chunk faster than the standalone sequential approach
Issued also as CD
There are no comments on this title.