Quantification and prediction of carbonate diagenesis from well logs and core data by artificial neural network / Samar Saied Abdelrady Shahat Hawary ; Supervised Abdulaziz M. Abdulaziz
Material type:
- التقييم الكمى لتحوارت الصخور الجيرية والتنبؤ بها من معلومات تسجيلات الآبار واللباب الصخرى عن طريق الشبكات الاصطناعية العصبية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2019.Sa.Q (Browse shelf(Opens below)) | Not for loan | 01010110079839000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.12.M.Sc.2019.Sa.Q (Browse shelf(Opens below)) | 79839.CD | Not for loan | 01020110079839000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Metallurgical Engineering
The application of artificial neural networks (ANNs) is used successfully to generate a numerical scale for diagenesis quantification from 0 to 10 with specified particular range for each type of diagenesis. It enhances identifying the rock typing and generated a link between geological and reservoir modeling. Also, a mathematical correlation is generated to directly predict the quantification of diagenesis in carbonate rocks in the study area
Issued also as CD
There are no comments on this title.