Novel active learning based approaches for balancing multi-objective maximization using trade-off between exploration and exploitation / Dina Ahmed Mohamed Mohamed Elreedy ; Supervised Samir I. Shaheen , Amir Fouad Surial Atiya
Material type:
- طرق مبتكرة لاستخدام التعلم الفعال من أجل تحقيق التوازن لتعظيم الأهداف المتعددة باستخدام التوازن بين الاستكشاف والاستغلال [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2020.Di.N (Browse shelf(Opens below)) | Not for loan | 01010110081390000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2020.Di.N (Browse shelf(Opens below)) | 81390.CD | Not for loan | 01020110081390000 |
Thesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
In this thesis, we develop two novel approaches for optimization problems incurring exploration-exploitation trade-off. First, we propose a new comprehensive active learning framework including exploration-based, exploitation-based, and balancing methods. Second, we develop several analytical formulations for handling exploration-exploitation trade-off by explicitly incorporating an exploration term depending on the learning model uncertainty. We apply our proposed approaches to an operations research related application which is dynamic pricing with demand learning. We perform experiments on synthetic and real datasets. The experimental results show superior performance of our proposed approaches in terms of the achieved utility (exploitation) and estimated model error (exploration)
Issued also as CD
There are no comments on this title.