Eeg-based motor imagery classification using digraph fourier transforms and extreme learning machines / Mohamed Hamed Ahmed Mahmoud Said ; Supervised Ayman M. Eldeib , Mahmoud H. Annaby , Muhammad A. Rushdi
Material type:
- تصنيف أنماط التصور الحركى المبنى على إشارات المخ باستخدام تحويلات فورييه للمخططات وآلات التعلم الفائق [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.03.M.Sc.2020.Mo.E (Browse shelf(Opens below)) | Not for loan | 01010110082361000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.03.M.Sc.2020.Mo.E (Browse shelf(Opens below)) | 82361.CD | Not for loan | 01020110082361000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Systems and Biomedical Engineering
Brain-computer interface (BCI) systems have been widely proposed for rehabilitation and neural control of external devices. This thesis proposes a classification method for BCI EEG signals associated with motor imagery patterns. The proposed method uses a graph Fourier transform based on a symmetric graph Laplacian for directed and undirected graph models of multi-channel EEG signals. This method shows superior performance compared to other methods. Experiments were conducted using extreme learning machines (ELM) on the dataset Ia of BCI Competition 2003. The directed and undirected graph models resulted in accuracies of 96.58% and 95.9%, respectively. This work can be extended to larger BCI multi-channel EEG classification problems. For these problems, additional vertex-domain graph features and graph transform features can be considered to reveal hidden network patterns
Issued also as CD
There are no comments on this title.