Improving anomaly detection in border gateway protocol time-series data / Mahmoud Elsayed Hashem Mahmoud ; Supervised Samir Ibrahim Shaheen , Ahmed Refaat Bashandy
Material type:
- تحسين الكشف عن الشذوذ في بيانات السلاسل الزمنية لبروتوكول البوابة الحدودية [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2020.Ma.I (Browse shelf(Opens below)) | Not for loan | 01010110082675000 | ||
![]() |
مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.06.Ph.D.2020.Ma.I (Browse shelf(Opens below)) | 82675.CD | Not for loan | 01020110082675000 |
Thesis (Ph.D.) - Cairo University - Faculty of Engineering - Department of Computer Engineering
The Internet infrastructure relies on the Border Gateway Protocol (BGP) to provide basic routing information. Where the abnormal routing events, resulting from direct or indirect anomalies, weaken the Internet connection and network balance. For this purpose, we have proposed several algorithms to improve the detection of anomalies in BGP time-series data. Our methods show that detected anomalies are more realistic and that the selected features are generally consistent across time-series. The performance evaluation is offered using various machine learning techniques
Issued also as CD
There are no comments on this title.