Some robust estimators for poisson regression models / Omnia Mohamed Saber Farghaly ; Supervised Sayed Meshaal Elsayed , Mohamed Reda Abonazel
Material type: TextLanguage: English Publication details: Cairo : Omnia Mohamed Saber Farghaly , 2020Description: 94 Leaves : charts ; 30cmOther title:- بعض المقدرات الحصينة لنماذج إنحدار بواسون [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.04.M.Sc.2020.Om.S (Browse shelf(Opens below)) | Not for loan | 01010110082662000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.18.04.M.Sc.2020.Om.S (Browse shelf(Opens below)) | 82662.CD | Not for loan | 01020110082662000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.18.04.M.Sc.2020.Mu.C A comparative study of some estimation methods for partially linear model / | Cai01.18.04.M.Sc.2020.Mu.C A comparative study of some estimation methods for partially linear model / | Cai01.18.04.M.Sc.2020.Om.S Some robust estimators for poisson regression models / | Cai01.18.04.M.Sc.2020.Om.S Some robust estimators for poisson regression models / | Cai01.18.04.M.Sc.2020.رش.أ اثر جودة البيانات فى التنبؤ بكفاءة القطاع الخاص المصرى / | Cai01.18.04.M.Sc.2020.رش.أ اثر جودة البيانات فى التنبؤ بكفاءة القطاع الخاص المصرى / | Cai01.18.04.M.Sc.2020.مع.إ استخدام طرق إعادة المعاينة فى تقدير معالم بعض نماذج السلاسل الزمنية / |
Thesis (M.Sc.) - Cairo University - Faculty of Graduate Studies for Statistical - Department of Statistics and Econometrics
The basic Generalized Linear Models (GLM) for count data is the Poisson model, it can be estimated by maximum likelihood (ML). However, in Poisson model when the response variable is a count, its conditional variance increases more rapidly than its mean, producing a condition termed overdispersion and invalidating the use of the Poisson model. Negative binomial (NB) model with dispersion parameter to handle overdispersed count data, the quasi-Poisson model which can be estimated by the method of quasi-likelihood (QL) and other models like Generalized Poisson (GP), Conway-Maxwell Poisson (CMP), and Poisson quasi{u2011}Lindley (PQL). In addition to some methods. The zero inflated Poisson (ZIP) model may be appropriate when there are more zeroes in the data than it is consistent with a Poisson distribution, and also in zero inflated Negative Binomial (ZINB) model.Outliers are one of those statistical issues that everyone knows about, but most people aren{u2019}t sure how to deal with. Most parametric statistics, like means, standard deviations, and correlations, and every statistic based on these, are highly sensitive to outliers. Outliers can really mess up the analysis. It is well known that the ML and QL estimators for these models is very sensitive to outliers. To overcome this problem, several robust estimators for GLM have been proposed
Issued also as CD
There are no comments on this title.