GPS denied navigation using low-cost inertial sensors and recurrent neural networks / Ahmed Ali Ahmed Abdulmajuid ; Supervised Gamal M. Elbayoumi , Osama S. Mohammady , Mohannad A. Draz
Material type: ScoreLanguage: English Publication details: Cairo : Ahmed Ali Ahmed Abdulmajuid , 2021Description: 99 P. : charts ; 30cmOther title:- الملاحة فى غ{u٠٦أأ}اب نظام التموضع العالمى باستخدام مستشعرات القصور الذاتى منخفضة التكلفة والشبكات العصب{u٠٦أأ}ة المتكررة [Added title page title]
- Issued also as CD
Item type | Current library | Home library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Thesis | قاعة الرسائل الجامعية - الدور الاول | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.01.M.Sc.2021.Ah.G (Browse shelf(Opens below)) | Not for loan | 01010110085041000 | |||
CD - Rom | مخـــزن الرســائل الجـــامعية - البدروم | المكتبة المركزبة الجديدة - جامعة القاهرة | Cai01.13.01.M.Sc.2021.Ah.G (Browse shelf(Opens below)) | 85041.CD | Not for loan | 01020110085041000 |
Browsing المكتبة المركزبة الجديدة - جامعة القاهرة shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Cai01.13.01.M.Sc.2021.Ab.N Numerical investigation of valved pulse jet engine design parameters on performance / | Cai01.13.01.M.Sc.2021.Ab.N Numerical investigation of valved pulse jet engine design parameters on performance / | Cai01.13.01.M.Sc.2021.Ah.G GPS denied navigation using low-cost inertial sensors and recurrent neural networks / | Cai01.13.01.M.Sc.2021.Ah.G GPS denied navigation using low-cost inertial sensors and recurrent neural networks / | Cai01.13.01.M.Sc.2021.Ba.B Blade camber effects on vertical axis wind turbines performance / | Cai01.13.01.M.Sc.2021.Ba.B Blade camber effects on vertical axis wind turbines performance / | Cai01.13.01.M.Sc.2021.Di.M Modeling, analysis and control for flapping wing micro air vehicle at hover conditions / |
Thesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Aerospace Engineering
Autonomous missions of drones require continuous and reliable estimates for their velocity and position. Traditionally, Extended Kalman Filtering (EKF) is applied to measurements from Gyroscope, Accelerometer, Magnetometer, Barometer and GPS to produce these estimates. When the GPS signal is lost, estimates deteriorate and become unusable in a few seconds, especially when using low-cost inertial sensors. This thesis proposes an estimation method that uses a Recurrent Neural Network (RNN) to allow reliable state estimates in the absence of GPS signal. On average, EKF positioning error grows to around 40 kilometers in five minutes of GPS-less typical drone flight.The proposed method reduces that error by 98% in the same GPS outage
Issued also as CD
There are no comments on this title.