A shared parameter model for longitudinal data analysis /
نموذج معالم مشتركة لتحليل البيانات الطوليه
Nesma Mady Mohamed Darwish ; Supervised Ahmed Mahmoud Gad
- Cairo : Nesma Mady Mohamed Darwish , 2013
- 65 Leaves ; 25cm
Thesis (M.Sc.) - Cairo University - Faculty of Economics and Political Science - Department of Statistics
Longitudinal data with dropout are common in practice. The validity of standard methods for analysis of incomplete data depends on the assumption that the missing data mechanism is ignorable according to Rubin's classification. Incomplete longitudinal data can be modeled using pattern mixture, selection and shared parameter models. Inference about longitudinal data with non-random dropout reguires incorporating a dropout model in the likelihood function
Dropout missing Longitudinal data Non-random missing