header
Local cover image
Local cover image
Image from OpenLibrary

Biofuel production from algae / Fatma Mohamed Ibrahim Nasr ; Supervised Mahmoud Wafik Ahmed Sadik , Sayed Abdelkader Fayed , Nashwa Abdelalim Hassan Fetyan

By: Contributor(s): Material type: TextTextLanguage: English Publication details: Cairo : Fatma Mohamed Ibrahim Nasr , 2021Description: 136 P. : charts ; 25cmOther title:
  • انتاج الوقود الحيوى من الطحالب [Added title page title]
Subject(s): Online resources: Available additional physical forms:
  • Issued also as CD
Dissertation note: Thesis (M.Sc.) - Cairo University - Faculty of Agriculture - Department of Microbiology Summary: In response to the world energy crisis, micro algal biodiesel production has received much interest in an effort to search for sustainable development. Beside, algae nutrition seems to be the most limiting factor concerning proper growth and economy cost.The main figure in this respect is carbon nutrition. Growth was performed using F2 growth medium for inoculum preparation and sub-culturing; while artificial growth medium was applied in order to enhance both dry weight and lipid productivities.The major properties of the produced biodiesel was investigated , moreover the residual defatted biomass of Nannochloropsis oculata alga was used as a fermentation feedstock for bioethanol production after hydrolysis under varying conditions of acid concentration and/or constant enzyme dosage. Results showed that a high nutritional composition of bagasse extract as an alternative source of organic carbon (98.9% of total cell carbon) was obtained by cultures grown with full F2 growth medium enriched by 10% of bagasse extract. Chemical composition reveled the relatively high content of carbohydrates (26.6%) and oils (11.9%) on the expense of protein content (32.8%) and the maximum figure of ash content (2%) goes back to sodium ions. Results of bioethanol production from defatted biomass of N. oculata indicated optimal conditions for hydrolysis process were 30 hours using a commercial enzyme that includes two stages: liquefaction process using diluted sulphoric acid (3.0% v/v) at 121{u00B0}C for 15 minute followed by incubation in commercially available hydrolytic enzymes Ü-amylase 1000 IU /g at 95{u00B0}C with a pH of 6, while for the scarification process using commercially available enzyme mixtures contain multiple enzyme activities, mainly exoglucanase, endoglucanase, hemi-cellulose, and beta-glucosidase
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Copy number Status Barcode
Thesis Thesis قاعة الرسائل الجامعية - الدور الاول المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.07.06.M.Sc.2021.Fa.B (Browse shelf(Opens below)) Not for loan 01010110084179000
CD - Rom CD - Rom مخـــزن الرســائل الجـــامعية - البدروم المكتبة المركزبة الجديدة - جامعة القاهرة Cai01.07.06.M.Sc.2021.Fa.B (Browse shelf(Opens below)) 84179.CD Not for loan 01020110084179000

Thesis (M.Sc.) - Cairo University - Faculty of Agriculture - Department of Microbiology

In response to the world energy crisis, micro algal biodiesel production has received much interest in an effort to search for sustainable development. Beside, algae nutrition seems to be the most limiting factor concerning proper growth and economy cost.The main figure in this respect is carbon nutrition. Growth was performed using F2 growth medium for inoculum preparation and sub-culturing; while artificial growth medium was applied in order to enhance both dry weight and lipid productivities.The major properties of the produced biodiesel was investigated , moreover the residual defatted biomass of Nannochloropsis oculata alga was used as a fermentation feedstock for bioethanol production after hydrolysis under varying conditions of acid concentration and/or constant enzyme dosage. Results showed that a high nutritional composition of bagasse extract as an alternative source of organic carbon (98.9% of total cell carbon) was obtained by cultures grown with full F2 growth medium enriched by 10% of bagasse extract. Chemical composition reveled the relatively high content of carbohydrates (26.6%) and oils (11.9%) on the expense of protein content (32.8%) and the maximum figure of ash content (2%) goes back to sodium ions. Results of bioethanol production from defatted biomass of N. oculata indicated optimal conditions for hydrolysis process were 30 hours using a commercial enzyme that includes two stages: liquefaction process using diluted sulphoric acid (3.0% v/v) at 121{u00B0}C for 15 minute followed by incubation in commercially available hydrolytic enzymes Ü-amylase 1000 IU /g at 95{u00B0}C with a pH of 6, while for the scarification process using commercially available enzyme mixtures contain multiple enzyme activities, mainly exoglucanase, endoglucanase, hemi-cellulose, and beta-glucosidase

Issued also as CD

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image