000 023720000a22003370004500
003 EG-GICUC
005 20250223025427.0
008 061118s2005 ua d f m 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
041 0 _aEng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.08.M.Sc.2005.Mo.R.
100 0 _aMohammed Mohsen Abdul Salam Abdul Latif
245 1 0 _aReconstruction of permittivity profiles for planar and cylindrical objects using optimized renormalization of the ricattiI /
_cCMohammed Mohsen Abdul Salam Abdul Latif ; Supervised Essam Abd El Halim Hashish , Mostafa Noor ElDeen Issmaiel Fahmy
246 1 5 _aاعادة بناء اشكال السماحية لاجسام مستوية واسطوانية باستخدام تقنية اعادة التسوية المثلى لمعادلة ريكاتى
260 _aCairo :
_bMohammed Mohsen Abdul Salam Abdul Latif ,
_c2005
300 _a83P :
_bdiagrs ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty Of Engineering - Department Of Electronics and Communications
520 _aReconstruction of permittivity profiles plays an important role in electromagnetic inverse scattering problems which have numerous applicationsExamples of these applications are : the geophysical applications which are used to predict earth constituents and biomedical applications which help in diagnosis of abnormal tissues in the human bodyDifferent algorithms have been investigated to perform the one dimensional inverse problem both in time and frequency domainsSuccessive modifications of these algorithms are given in the time domain using the non - linear Ricatti differential equation in a linearized formThis linearization is achieved by renormalizing the reflection coefficient in such a way to enable the direct reconstruction of the permittivity profile with the aid of the Fourier Transform in the planar structures and Hankel transforms in the cylindrical structures
530 _aIssued also as CD
653 4 _aPlanar and cylindrical objects
653 4 _aReconstruction
653 4 _aThe ricatti Equation
700 0 _aEssam Abd El Halim Hashish ,
_esupervisor
700 0 _aMostafa Noor ElDeen Issmaiel Fahmy ,
_esupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aEnas
_eCataloger
905 _aMustafa
_eRevisor
942 _2ddc
_cTH
999 _c12737
_d12737