000 04517namaa22004211i 4500
003 OSt
005 20240622101504.0
008 240601s2023 |||a|||f |m|| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_dara
049 _aDeposit
082 0 4 _a622.18
092 _a622.18
_221
097 _aM.Sc
099 _aCai01 13 12 M.Sc 2023 Mo.D
100 0 _aMohamed Hamdy Mohamed Ibrahim El-Sersy,
_epreparation.
245 1 0 _aDevelopment of six machine learning models for pump intake pressure calculations in esp wells /
_cBy Mohamed Hamdy Mohamed Ibrahim El-Sersy; Under the Supervision of Prof. Dr. Mohamed Helmy Sayyouh, Prof. Dr. Ahmed Hamdy El-Banbi, Prof. Dr. Mahmoud Abu El Ela
246 1 5 _aتطوير ست نماذج للتعلم الآلي للتنبؤ بضغط سحب المضخة في الابار التي تستخدم طرق الرفع بالمضخات الغاطسة /
264 0 _c2023.
300 _a117 pages :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc.)-Cairo University, 2023.
504 _aBibliography: pages 66-69.
520 _aThe pump intake pressure (PIP) is a crucial parameter for optimizing the performance improvement of pumped oil wells. Recently, Electrical submersible pump (ESP) systems have usually adopted downhole gauges to evaluate PIP. In this study, six new models (Linear Regression (LR) model, Polynomial Regression (PR) model, Decision Tree (DT) model, Random Forest (RF) model, Support Vector Machine (SVM) model, and finally, Artificial Neural Network (ANN) model) were developed based on machine learning algorithms and Artificial Intelligence (AI) techniques to predict pump intake pressure (PIP) from readily available data, and field measurements in ESP pumped wells. A database of 2352 field data points was collected from 105 ESP wells to develop the six new models. The data was split into 60% (1411 data points) for training and 40% (941 data points) for testing. The developed models rely on the following measurements as input parameters: wellhead pressure, total production rate, water cut, oil gravity, pump setting depth, the net liquid above the pump, tubing size, casing size, and casing pressure. The models' accuracies were compared against each other. Then, the developed models were compared against the accuracy of previous correlations and actual readings obtained from ESP downhole pressure sensors. The results indicate that the accuracy of the ANN model is significantly higher than that of the other developed machine learning models and the previously available correlations. Using the ANN model, the Average Mean Absolute Error (AMAE) comparing the calculated and the measured PIP is 11.93% and 12.33% for the training and testing data, respectively. These results demonstrate the strength of the developed model to predict the PIP with better accuracy and without the need for a downhole pressure sensor.
520 _aتم استنباط ستة نماذج جديدة وهي نموذج الانحدار الخطي ونموذج الانحدار متعدد الحدود ونموذج شجرة القرار ونموذج الغابة العشوائية ونموذج آلة المتجهات الداعم وأخيراً نموذج الشبكة العصبية الاصطناعية. تم تطوير هذه النماذج استنادًا إلى خوارزميات التعلم الآلي وتقنيات الذكاء الاصطناعي، للتنبؤ بضغط سحب المضخة من القياسات الحقلية المتاحة بسهولة وبيانات الآبار التي تستعمل المضخات الغاطسة الكهربائية
530 _aIssued also as CD
546 _aText in English and abstract in Arabic & English.
650 7 _aPetroleum Engineering
_2qrmak
653 0 _aArtificial Intelligence
_a ESP wells
_aArtificial Neural Networks
700 0 _aMohamed Helmy Sayyouh
_ethesis advisor.
700 0 _aAhmed Hamdy El Banbi
_ethesis advisor.
700 0 _aMahmoud Abu El-Ela
_ethesis advisor.
900 _b01-01-2023
_cMahmoud Abu El-Ela
_cAhmed Hamdy El Banbi
_cMohamed Helmy Sayyouh
_dKhaled Ahmed Abdel Fattah
_dKhaled Mohamed Mwafy
_UCairo University
_FFaculty of Engineering
_DDepartment of Petroleum Engineering
905 _aNourhan
_eHuda
942 _2ddc
_cTH
_e21
_n0
999 _c167248