000 04729namaa22004211i 4500
003 OSt
005 20250223033333.0
008 241201s2023 |||a|||fr|m|| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a621.367
092 _a621.367
_221
097 _aM.Sc
099 _aCai01.13.08.M.Sc.2023.Ab.L
100 0 _aAbeer Ayman Ahmed Ali Elbehery,
_epreparation.
245 1 0 _aLow Complexity Image Inpainting Using Autoencoder /
_cby Abeer Ayman Ahmed Ali Elbehery ; Under the Supervision of Prof. Dr. Yasmine Aly Fahmy, Dr. Mai Badawi Kafafy.
246 1 5 _aترميم الصور بطريقة غير معقدة بإستخدام المشفر الآلي /
264 0 _c2023.
300 _a58 pages :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc.)-Cairo University, 2023.
504 _aBibliography: pages 54-58.
520 _aImage inpainting is filling the missing or corrupted pixels in an image in a realistic way that cannot be differentiated by human eye. Traditionally, inpainting was done manually by artists to complete the missing regions in old paintings. In the digital processing era, image inpainting became an interesting research topic. The used techniques can be categorized into 2 categories; Non learning techniques and deep learning-based techniques. Non-learning techniques have been introduced since the year 2000. These methods include diffusion-based, patch-based and exemplar-based methods. Diffusion-based methods use partial differential equations to fill the image holes and ensure the continuity of edges along it. Patch-based methods search the whole image to find the perfect patches to complete the image, and Exemplar-based methods tend to merge both diffusion and patch-based methods. With the rise of deep learning, it is being widely used in image inpainting. The used models are capable of studying and learning the structure of the images to reconstruct the missing regions. Various models are introduced in literature for image inpainting including simple CNNs, autoencoders, GANs, DCGANs, and multi-stage networks. These models vary in the size, number of layers and number of parameters in the model. Non learning methods require simpler calculations, but they are only suitable for recovering images with simple structure and small missing regions. Deep learning- based methods have proven to be efficient for batch processing, and to fill holes of different sizes with better quality than non learning methods. But deep learning models require massive processing capabilities and long period of time for training, which may not be suitable in all cases. In this thesis, we access the complexity issue of training the image inpainting deep learning models. We propose an autoencoder architecture with some features added as skip connections, Adam optimizer and leaky ReLU, it has proven to outperforms other deep learning techniques in literature methods with lower processing and time complexity.
520 _aترميم الصور هي عملية إكمال الأجزاء الناقصة أو المدمرة من الصور بطريقة واقعية بحيث لا تستطيع العين التمييز بين الأجزاء الأصلية والأجزاء المرممة. التعلم العميق يستخدم بكثرة في ترميم الصور لأن له أداء أفضل من طرق الترميم التقليدية، ولكنه يحتاج إلى موارد معالجة ذات إمكانيات عالية ووقت أطول لتدريب النموذج المستخدم. النموذج المقترح يستخدم المشفر الآلي لترميم الصور، مع بعض التعديلات أثبت هذا النموذج أنه أفضل من بعض النماذج المستخدمة الأخرى من حيث إمكانيات المعالجة والوقت المستهلك.
530 _aIssued also as CD
546 _aText in English and abstract in Arabic & English.
650 7 _aImage processing ‪Digital techniques
_2qrmak
653 0 _aImage inpainting
_aAutoencoder
_aSkip connections
_aLow complexity
_aAdam optimizer
700 0 _aYasmine Aly Fahmy
_ethesis advisor.
700 0 _aMai Badawi Kafafy
_ethesis advisor.
900 _b01-01-2023
_cYasmine Aly Fahmy
_cMai Badawi Kafafy
_dOmar Ahmed Nasr
_dMohamed Farouk AbdElKader
_UCairo University
_FFaculty of Engineering
_DDepartment of Electronics and Communications Engineering
905 _aEman
_eHuda
942 _2ddc
_cTH
_e21
_n0
999 _c169130