000 05253namaa22004211i 4500
003 OSt
005 20250223033343.0
008 241211s2023 |||a|||fr|m|| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a627
092 _a627
_221
097 _aM.Sc
099 _aCai01.13.05.M.Sc.2023.Ya.M
100 0 _aYasmen Amr Hamed Elsaid Khalil,
_epreparation.
245 1 2 _aA Modified Genetic Algorithm-Heuristic Programming Model For Optimal Design Of Sewer Networks /
_cby Yasmen Amr Hamed Elsaid Khalil ; Under the Supervision of Prof. Ashraf Hassan Mohib Ghanem, Dr. Yehya Emad Imam
246 1 5 _aنموذج معدل بخوارزمية جينية مع برمجة مباشرة لتحقيق التصميم الأمثل لشبكات الصرف الصحي /
264 0 _c2023.
300 _a106 pages :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc.)-Cairo University, 2023.
504 _aBibliography: pages 50-52.
520 _aAmong the Sustainable Development Goals (SDGs) established by the United Nations, SDG 6 requires water and sanitation for all. However, construction of wastewater collection systems requires considerable investments. These investments can be reduced by using automated optimization tools for identifying the optimal design alternative that achieves minimal system cost while satisfying design constraints. Much of the related research over the past decade has focused on developing optimization design tools that are more robust and efficient. Therefore, there is a need to develop an efficient tool for obtaining the optimum design of the sewage systems with reasonable computational effort. In this study, a recent hybrid optimization model that was introduced by Hassan et al. (2018) and relies on Genetic Algorithm (GA) and Heuristic Programming (HP), was modified to improve efficiency by reducing runtime and the number of computations. Similar to the original GA-HP model, the Modified GA-HP (MGAHP) model identifies optimal pipe diameters and slopes by minimizing the total cost of gravity sewers and manholes depths for a selected system layout. The MGAHP model greatly reduces the extensive computational calculations, checks, and associated penalty costs that are applied in the original GA-HP model by initially limiting the set of feasible diameters for individual sewer lines. The efficiency of the proposed model was tested using four case studies ranging in size from 12 to 40 sewers. In the first case study with 12 pipes, the modified model required on average ~17% less function evaluations for the Genetic Algorithm and reduced the overall runtime by 98%. In the second case study with 20 pipes, the modified model required 10% less GA function evaluations and reduced the overall runtime by 98.2%. In the third case study with 40 pipes, the modified model required 52% less GA function evaluations and reduced the overall runtime by 99%. The fourth example was solved using Bentley SewerGems, GA-HP model and MGAHP model. In the fourth case study with 20 pipes, the modified model required 14% less GA function evaluations and reduced the overall runtime by 97%. The cost of the SewerGems design is 17.7 % higher than the design achieved by GA-HP model and MGAHP model. The efficiency of the proposed model enables its reliable application for optimal design of large sewer networks and for examining an extensive set of possible layouts
520 _aيهدف هذا البحث الى تقديم نموذج معدل بخوارزمية جينية مع برمجة مباشرة لتحقيق التصميم الامثل لشبكات الصرف الصحي، هذا النموذج هو نموذج تم تطويره من نموذج تم تقديمه في Hassan et al. (2018). تم تطوير النموذج الأصلي لتحسين الكفاءة عن طريق تقليل نطاق البحث وذلك بتحديد مجموعة من الاقطار لكل ماسورة في البداية و استبعاد بعض الأقطار التي لا تحقق القيم التصميمية المقبولة من سرعات و نسب امتلاء. يهدف النموذج المقدم الى الوصول الى التصميم الأمثل بكفاءة عالية و يقلل النموذج المقدم بشكل كبير من الحسابات و بالتالي فهو أسرع من النموذج الأصلي.
530 _aIssued also as CD
546 _aText in English and abstract in Arabic & English.
650 7 _aIrrigation and Hydraulics
_2qrmak
653 0 _aOptimal design
_aSewer Network
_aHeuristic Programming
_aWastewater
_aManagement
_aOptimization
700 0 _aAshraf Hassan Mohib Ghanem
_ethesis advisor.
700 0 _aYehya Emad Imam
_ethesis advisor.
900 _b01-01-2023
_cAshraf Hassan Mohib Ghanem
_cYehya Emad Imam
_dHesham Bekhit Mohammed
_dAnas Mohammed El Molla
_UCairo University
_FFaculty of Engineering
_DDepartment of Irrigation and Hydraulics Engineering
905 _aEman
_eHuda
942 _2ddc
_cTH
_e21
_n0
999 _c169405