000 05471namaa2200409 i 4500
003 OSt
005 20250112141008.0
008 241217s2023 ua a|||f |m|| 000 0 eng d
040 _aEG-GICUC
_beng
_cEG-GICUC
_dEG-GICUC
_erda
041 0 _aeng
_beng
_bara
049 _aDeposit
082 0 4 _a371.358
092 _a371.358
_221
097 _aM.Sc
099 _aCai01.18.07.M.Sc.2023.Am.P.
100 0 _aAmal Shaker A. M. Khamis,
_epreparation.
245 1 0 _aPredicting Students Academic Performance Using Machine Learning Techniques /
_cBy Amal Shaker A. M. Khamis; Under The Supervision of Prof. Dr. Ahmed GadAllah, Prof. Dr. AbdelMoniem Helmy
246 1 5 _aتنبؤ الأداء الأكاديمي للطلاب باستخدام تقنيات التعلم الآلي /
264 0 _c2023.
300 _a160 Leaves :
_billustrations ;
_c30 cm. +
_eCD.
336 _atext
_2rda content
337 _aUnmediated
_2rdamedia
338 _avolume
_2rdacarrier
502 _aThesis (M.Sc.)-Cairo University, 2023.
504 _aBibliography: pages 150-155.
520 _a5-2 باللغه الانجليزيه : The current period has witnessed unprecedented progress in the use of e-learning in all domains utilizing personalized learning systems and recognizing the crucial role of effective guidance in Personal Learning Environments and educational settings. Nevertheless, the importance and impact of personalized content delivery in the educational field are still questionable. The quality of the personalized recommendations can be greatly improved by working on predicting academic performance by looking at data and other activities related to student’s performance, attitudes, and interactions. The use of machine learning algorithms to predict student outcomes based on current behavior and performance has been shown to be a valuable tool for predicting outcomes at various educational stages. Thus, machine learning (ML) techniques are the most appropriate approaches for achieving this goal. This research employed four supervised ML classifiers algorithms: Logistic Regression, Decision Tree, K-Nearest Neighbors, and Support Vector Machines to predict students’ academic performance based on their collected data. This data is an educational data collected from learning management system (LMS) through two educational semesters for 480 students studying levels G1-G12 from different 14 origin country. The collected data include demographic, academic, and behavioral characteristics for each student, and also their parents feedback. These models achieved f1-score results of 82.27, 83.91, 83.96, 83.17 respectively
520 _aشهدت الفترة الحالية تقدما غير مسبوق في استخدام التعلم الإلكتروني في جميع المجالات باستخدام أنظمة التعلم الشخصية والاعتراف بالدور الحاسم للتوجيه الفعال في بيئات التعلم الشخصية والبيئات التعليمية. ومع ذلك، فإن أهمية وتأثير تقديم المحتوى الشخصي في المجال التعليمي لا تزال موضع شك. يمكن تحسين جودة التوصيات الشخصية بشكل كبير من خلال العمل على التنبؤ بالأداء الأكاديمي من خلال النظر في البيانات والأنشطة الأخرى المتعلقة بأداء الطالب واتجاهاته وتفاعلاته. لقد ثبت أن استخدام خوارزميات التعلم الآلي للتنبؤ بنتائج الطلاب بناءً على السلوك والأداء الحالي هو أداة قيمة للتنبؤ بالنتائج في المراحل التعليمية المختلفة. وبالتالي، فإن تقنيات التعلم الآلي (ML) هي الأساليب الأكثر ملاءمة لتحقيق هذا الهدف. استخدم هذا البحث أربع خوارزميات لمصنفات تعلم الآلة تحت الإشراف: الانحدار اللوجستي، وشجرة القرار، وأقرب جيران K، وأجهزة المتجهات الداعمة للتنبؤ بالأداء الأكاديمي للطلاب بناءً على البيانات التي تم جمعها. هذه البيانات عبارة عن بيانات تعليمية تم جمعها من نظام إدارة التعلم (LMS) خلال فصلين دراسيين لـ 480 طالبًا يدرسون المستويات G1-G12 من 14 دولة مختلفة. وتشمل البيانات التي تم جمعها الخصائص الديموغرافية والأكاديمية والسلوكية لكل طالب، وكذلك ملاحظات أولياء أمورهم. حققت هذه النماذج نتائج f1 82.27، 83.91، 83.96، 83.17 على التوالي.
530 _aIssued also as CD
546 _aText in English and abstract in Arabic & English.
650 7 _aStudent Performance Prediction
_2qrmak
653 0 _aLearning Analytics
_aMachine learning
_aEducation, Student Performance Prediction
700 0 _aAhmed GadAllah
_ethesis advisor.
700 0 _aAbdelMoniem Helmy
_ethesis advisor.
900 _b01-01-2023
_cAhmed GadAllah
_cAbdelMoniem Helmy
_UCairo University
_FFaculty of Graduate Studies for Statistical Research
_DDepartment of Network Engineer / Software Engineering
905 _aEman El gebaly
_eHuda
942 _2ddc
_cTH
_e21
_n0
999 _c169521