000 | 01738cam a2200349 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223030339.0 | ||
008 | 110120s2010 ua dh f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.12.17.M.Sc.2010.Ne.H | ||
100 | 0 | _aNermeen Kamel Abdelmoniem | |
245 | 1 | 0 |
_aHybrid optimization techniques for cancer diagnosis models / _cNermeen Kamel Abdelmoniem ; Supervised L . F . Abdelal , N . H . Sweilam , A . A . Tharwat |
246 | 1 | 5 | _aالتقنيات الامثلية المهجنه لتشخيص مرض السرطان |
260 |
_aCairo : _bNermeen Kamel Abdelmoniem , _c2010 |
||
300 |
_a90P. : _bcharts , facsimiles ; _c25cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Science - Department of Mathematics | ||
520 | _aSuport vector machine has become an increasingly popular tool for machine learning tasks involving classification regression or novelty detection . Training a support vector machine requires the solution of a very large quadratic programming problem . Ttaditional optimization methods cannot be directly applied due to memory restrictions . Up to now several approaches exist for circumventing the above shortcomings and work well | ||
530 | _aIssued also as CD | ||
653 | 4 | _aCancer model | |
653 | 4 | _aParticle swarm optimisation (PSO) | |
653 | 4 | _aSupport vector machine (SVM) | |
700 | 0 |
_aAssem Abdelfatah Tharwat , _eSupervisor |
|
700 | 0 |
_aLaila Fahmy Abdelal , _eSupervisor |
|
700 | 0 |
_aNasser Hassen Sweilam , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aSoheir _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c32791 _d32791 |