000 01738cam a2200349 a 4500
003 EG-GiCUC
005 20250223030339.0
008 110120s2010 ua dh f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.12.17.M.Sc.2010.Ne.H
100 0 _aNermeen Kamel Abdelmoniem
245 1 0 _aHybrid optimization techniques for cancer diagnosis models /
_cNermeen Kamel Abdelmoniem ; Supervised L . F . Abdelal , N . H . Sweilam , A . A . Tharwat
246 1 5 _aالتقنيات الامثلية المهجنه لتشخيص مرض السرطان
260 _aCairo :
_bNermeen Kamel Abdelmoniem ,
_c2010
300 _a90P. :
_bcharts , facsimiles ;
_c25cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Science - Department of Mathematics
520 _aSuport vector machine has become an increasingly popular tool for machine learning tasks involving classification regression or novelty detection . Training a support vector machine requires the solution of a very large quadratic programming problem . Ttaditional optimization methods cannot be directly applied due to memory restrictions . Up to now several approaches exist for circumventing the above shortcomings and work well
530 _aIssued also as CD
653 4 _aCancer model
653 4 _aParticle swarm optimisation (PSO)
653 4 _aSupport vector machine (SVM)
700 0 _aAssem Abdelfatah Tharwat ,
_eSupervisor
700 0 _aLaila Fahmy Abdelal ,
_eSupervisor
700 0 _aNasser Hassen Sweilam ,
_eSupervisor
856 _uhttp://172.23.153.220/th.pdf
905 _aNazla
_eRevisor
905 _aSoheir
_eCataloger
942 _2ddc
_cTH
999 _c32791
_d32791