000 | 01818cam a2200337 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223030740.0 | ||
008 | 130116s2012 ua dh f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.03.M.Sc.2012.Ab.C | ||
100 | 0 | _aAbdulrahman Abdulaziz Mohamed Mohamed Sharaf | |
245 | 1 | 0 |
_aCompressed sensing for better MRI image reconstruction / _cAbdulrahman Abdulaziz Sharaf ; Supervised Amr Abdurrahman Sharawi , Samir Mohamed Yusuf Badawy |
246 | 1 | 5 | _aاستخدام الاحساس المنضغط لاعادة بناء أفضل لصور الرنين المغناطيسي |
260 |
_aCairo : _bAbdulrahman Abdulaziz Mohamed Mohamed Sharaf , _c2012 |
||
300 |
_a77 P. : _bcharts , facsimiles ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Systems and Biomedical Engineering | ||
520 | _aPartial fourier analysis is an old technique used to reconstruct the MRI image by acquiring only 50% of the image and estimate the other 50% by symmetry of the fourier domain. This thesis introduces the combination between the well-known partial fourier (Margosian and zero filling) algorithm and compressed sensing to determine the number of required fourier coefficients; we used their power distribution in the image for every case to show the efficiency and the quality of reconstructed MRI image | ||
530 | _aIssued also as CD | ||
653 | 4 | _aCompressed sensing | |
653 | 4 | _aMRI | |
653 | 4 | _aPartial fourier | |
700 | 0 |
_aAmr Abdurrahman Sharawi , _eSupervisor |
|
700 | 0 |
_aSamir Mohamed Yusuf Badawy , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aNazla _eRevisor |
||
905 |
_aSamia _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c41127 _d41127 |