000 | 01702cam a2200337 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
005 | 20250223030751.0 | ||
008 | 130213s2012 ua d f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aPh.D | ||
099 | _aCai01.18.04.Ph.D.2012.Ya.P | ||
100 | 0 | _aYasmin Mohamed Ibrahim | |
245 | 1 | 2 |
_aA proposed statistical method for detecting the quality of cross section data / _cYasmin Mohamed Ibrahim ; Supervised Amany Mousa Mohamed , Somaya Kamel Elattar |
246 | 1 | 5 | _aطريقة احصائية مقترحة لتحديد جودة بيانات القطاعات المستعرضة |
260 |
_aCairo : _bYasmin Mohamed Ibrahim , _c2012 |
||
300 |
_a100Leaves : _bcharts ; _c30cm |
||
502 | _aThesis (Ph.D.) - Cairo University - Institute of Statistical Studies and Research - Department of Statistics and Econometrics | ||
520 | _aCorrectness and presision of data are very crucial in applications for reliable results . Few statistical tools have been used to deal with the problem of data quality . Statistical methods for studying data quality have focused on detecting outliers and influential observation . In this thesis , an indicator for data quality is proposed , which depends on observations in data sets without the need for auxiliary information | ||
530 | _aIssued also as CD | ||
653 | 4 | _aData mining | |
653 | 4 | _aData quality | |
653 | 4 | _aDistance measures | |
700 | 0 |
_aAmany Mousa Mohamed , _eSupervisor |
|
700 | 0 |
_aSomaya Kamel Elattar , _eSupervisor |
|
856 | _uhttp://172.23.153.220/th.pdf | ||
905 |
_aFatma _eCataloger |
||
905 |
_aNazla _eRevisor |
||
942 |
_2ddc _cTH |
||
999 |
_c41488 _d41488 |