000 | 01781cam a2200313 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
008 | 140108s2013 ua dh f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aDeposite | ||
097 | _aM.Sc | ||
099 | _aCai01.13.05.M.Sc.2013.So.D | ||
100 | 0 | _aSohaib Mundher Hussein Alukashy | |
245 | 1 | 0 |
_aDeveloping an rtificial neural network to predict the effect of sulfate attack on the concrete structures / _cSohaib Mundher Hussein Alukashy ; Supervised Osama A. Hodhod , Mostafa A. Abdeen |
246 | 1 | 5 | _aتطوير شبكة عصبية اصطناعية للتنبؤ بتأثير مهاجمة الكبريتات للمنشآت الخرسانية |
260 |
_aCairo : _bSohaib Mundher Hussein Alukashy , _c2013 |
||
300 |
_a84 P. : _bcharts , facsimiles ; _c30cm |
||
502 | _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Civil Engineering | ||
520 | _aIn this study, an artificail neural network (ANN) is developed to be used in prediciting the reduction incompressive strength of concrete exposed to sulfate bearing environments. A total of 214 cases are gathered from pertinent literature. The data used in developing the artificial neural network model are arranged in a format of nine inputs which are: cement type, cement content,water to cement ratio, fine and coarse aggregate contents, mineral admixture type and content, type and concentration of sulfate salt, and exposure time | ||
530 | _aIssued also as CD | ||
653 | 4 | _aANN | |
653 | 4 | _aSoft computing | |
653 | 4 | _aSulfate attack | |
700 | 0 |
_aMostafa Ahmed Abdeen , _eSupervisor |
|
700 | 0 |
_aOsama A. Hodhod , _eSupervisor |
|
905 |
_aAml _eCataloger |
||
905 |
_aNazla _eRevisor |
||
942 |
_2ddc _cTH |
||
999 |
_c44782 _d44782 |