000 01781cam a2200313 a 4500
003 EG-GiCUC
008 140108s2013 ua dh f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aDeposite
097 _aM.Sc
099 _aCai01.13.05.M.Sc.2013.So.D
100 0 _aSohaib Mundher Hussein Alukashy
245 1 0 _aDeveloping an rtificial neural network to predict the effect of sulfate attack on the concrete structures /
_cSohaib Mundher Hussein Alukashy ; Supervised Osama A. Hodhod , Mostafa A. Abdeen
246 1 5 _aتطوير شبكة عصبية اصطناعية للتنبؤ بتأثير مهاجمة الكبريتات للمنشآت الخرسانية
260 _aCairo :
_bSohaib Mundher Hussein Alukashy ,
_c2013
300 _a84 P. :
_bcharts , facsimiles ;
_c30cm
502 _aThesis (M.Sc.) - Cairo University - Faculty of Engineering - Department of Civil Engineering
520 _aIn this study, an artificail neural network (ANN) is developed to be used in prediciting the reduction incompressive strength of concrete exposed to sulfate bearing environments. A total of 214 cases are gathered from pertinent literature. The data used in developing the artificial neural network model are arranged in a format of nine inputs which are: cement type, cement content,water to cement ratio, fine and coarse aggregate contents, mineral admixture type and content, type and concentration of sulfate salt, and exposure time
530 _aIssued also as CD
653 4 _aANN
653 4 _aSoft computing
653 4 _aSulfate attack
700 0 _aMostafa Ahmed Abdeen ,
_eSupervisor
700 0 _aOsama A. Hodhod ,
_eSupervisor
905 _aAml
_eCataloger
905 _aNazla
_eRevisor
942 _2ddc
_cTH
999 _c44782
_d44782