000 | 01357cam a2200265 a 4500 | ||
---|---|---|---|
003 | EG-GiCUC | ||
008 | 140826s2013 ua f m 000 0 eng d | ||
040 |
_aEG-GiCUC _beng _cEG-GiCUC |
||
041 | 0 | _aeng | |
049 | _aGift | ||
097 | _aM.Sc | ||
099 | _aCai01.34.M.Sc.2013.Me.E | ||
100 | 0 | _aMennat Allah Amer | |
245 | 1 | 0 |
_aEnhancing one - class support vector machines for unsupervised anomaly detection / _cMennatallah Amer ; Supervised Markus Goldstein , Andreas Dengel , Slim Abdennadher |
260 |
_aCairo : _bMennat Allah Amer , _c2013 |
||
300 |
_a77 Leaves ; _c30cm |
||
502 | _aThesis (M.Sc.) - German University - Faculty of Postgraduate Studies and Scientific Research - Department of Computer Science and Engineering | ||
520 | _aSupport vector machines (SVMs) have been one of the most prominent machine learning techniques for the past decade. In this thesis, the effectiveness of applying SVMs for derecting outliers in an unsupervised setting is investigated. Unsupervised anomaly detection techniques operate directly on an unseen dataset, under the assumption that outhers are sparsely present in it | ||
700 | 0 |
_aAndreas Dengel , _eSupervisor |
|
700 | 0 |
_aMarkus Goldstein , _eSupervisor |
|
700 | 0 |
_aSlim Abdennadher , _eSupervisor |
|
905 |
_aNazla _eRevisor |
||
905 |
_aSamia _eCataloger |
||
942 |
_2ddc _cTH |
||
999 |
_c47024 _d47024 |