000 01357cam a2200265 a 4500
003 EG-GiCUC
008 140826s2013 ua f m 000 0 eng d
040 _aEG-GiCUC
_beng
_cEG-GiCUC
041 0 _aeng
049 _aGift
097 _aM.Sc
099 _aCai01.34.M.Sc.2013.Me.E
100 0 _aMennat Allah Amer
245 1 0 _aEnhancing one - class support vector machines for unsupervised anomaly detection /
_cMennatallah Amer ; Supervised Markus Goldstein , Andreas Dengel , Slim Abdennadher
260 _aCairo :
_bMennat Allah Amer ,
_c2013
300 _a77 Leaves ;
_c30cm
502 _aThesis (M.Sc.) - German University - Faculty of Postgraduate Studies and Scientific Research - Department of Computer Science and Engineering
520 _aSupport vector machines (SVMs) have been one of the most prominent machine learning techniques for the past decade. In this thesis, the effectiveness of applying SVMs for derecting outliers in an unsupervised setting is investigated. Unsupervised anomaly detection techniques operate directly on an unseen dataset, under the assumption that outhers are sparsely present in it
700 0 _aAndreas Dengel ,
_eSupervisor
700 0 _aMarkus Goldstein ,
_eSupervisor
700 0 _aSlim Abdennadher ,
_eSupervisor
905 _aNazla
_eRevisor
905 _aSamia
_eCataloger
942 _2ddc
_cTH
999 _c47024
_d47024